(7.1 \# 38) Show that $(f * g) * h=f *(g * h)$, where f and g are arithmetic functions.

For any integer n we have

$$
\begin{aligned}
((f * g) * h)(n) & =\sum_{d \mid n}(f * g)(d) h\left(\frac{n}{d}\right) \\
& =\sum_{d \mid n}\left(\sum_{a \mid d} f(a) g\left(\frac{d}{a}\right)\right) h\left(\frac{n}{d}\right) \\
& =\sum_{d \mid n}\left(\sum_{a b=d} f(a) g(b)\right) h\left(\frac{n}{d}\right) \\
& =\sum_{a b c=n} f(a) g(b) h(c) \\
& =\sum_{a b c=n} f(a) \sum_{b c=\frac{n}{a}} g(b) h(c) \\
& =\sum_{a \mid n} f(a)(g * h)\left(\frac{n}{a}\right) \\
& =f *(g * h)(n)
\end{aligned}
$$

(7.4 \# 10) Show that if n is a positive integer, then $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$.

We know that in any four consecutive integers, one is divisible by four. That is, $4 \mid(n+a)$ for some $a=0,1,2,3$. Thus $(n+a)=2^{k} m$ with m odd and $k \geq 2$, so $\mu(n+a)=\mu\left(2^{k}\right) \mu(m)=0$ since $\mu\left(2^{k}\right)=0$ for all $k>1$.
(7.4 \# 22) Let n be a positive integer. Show that

$$
\prod_{d \mid n} \mu(d)=\left\{\begin{array}{l}
-1 \text { if } n \text { is a prime; } \\
0 \text { if } n \text { has a square factor; } \\
1 \text { if } n \text { is square free and composite }
\end{array}\right.
$$

We will use the fact that

$$
\sum_{\substack{j=0 \\ j \text { odd }}}^{k}\binom{k}{j}
$$

is even. Let this sum be denoted a.
Now, if $n=p$ is a prime, then $\prod_{d \mid p} \mu(d)=\mu(1) \mu(p)=-1$.
If $s \mid n$ with s square, then $p^{2} \mid n$ for some prime p and $\mu\left(p^{2}\right)=0$. Thus $\prod_{d \mid n} \mu(d)=0$.

Finally, if n is squarefree, then $n=p_{1} p_{2} \cdots p_{k}$ and each divisor d of n is 1 or a product of distinct primes. Since $\mu(d)=(-1)^{t}$ where $t \leq k$ is the number of prime divisors of d, we have

$$
\begin{aligned}
\prod_{d \mid n} \mu(d) & =(-1)^{k}(1)^{\binom{k}{2}}(-1)^{\binom{k}{3}}(1)^{\binom{k}{4} \cdots(\pm 1)^{\binom{k}{k}}} \\
& =(-1)^{a} \\
& =1,
\end{aligned}
$$

as a is even.
(7.4 \# 30) Show that $\Sigma_{d \mid n} \Lambda(d)=\log n$ whenever n is a positive integer.

Recall the definition

$$
\Lambda(n)= \begin{cases}\log p & n=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Then if $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{t}^{a_{t}}$ is any positive integer,

$$
\begin{aligned}
\sum_{d \mid n} \Lambda(d) & =\sum_{p^{k} \mid n} \log (p) \\
& =a_{1} \log \left(p_{1}\right)+a_{2} \log \left(p_{2}\right)+\cdots+a_{t} \log \left(p_{t}\right) \\
& =\log \left(p_{1}^{a_{1}}\right)+\log \left(p_{2}^{a_{2}}\right)+\cdots+\log \left(p_{t}^{a_{t}}\right) \\
& =\log (n)
\end{aligned}
$$

(8.1 \# 6) Decrypt the message RTOLK TOIK, which was encrypted using the affine transformation $C \equiv 3 P+24(\bmod 26)$.

First note that the inverse of three modulo 26 is 9 , as $3 \cdot 9=27 \equiv 1(\bmod 26)$. Thus we have $C-24 \equiv 3 P(\bmod 26)$ and $P \equiv 9(C-24) \equiv 9(C+2) \equiv 9 C+18(\bmod 26)$. Using this equation we arrive at the plaintext "Phone Home".
(8.1 \# 8) The message KYVMR CLVFW KYVBV PZJJV MVEKV VE was encrypted using a shift transformation $C \equiv P+k(\bmod 26)$. Use the frequencies of letters to determine the value of k. What is the plaintext message?

The first thing to note is that the most frequently occurring letters in the ciphertext are V, with eight occurrences, and K, with three. None of the other letters occur more than twice. So it is reasonable to think that E is mapped to V and T is mapped to K under this transformation. That is, $(4 \rightarrow 21)$ and $(19 \rightarrow 10)$. Plugging either of these into the given equation $C \equiv P+k(\bmod 26)$ gives a value of 17 for k. Using this we decrypt the ciphertext to: THE VALUE OF THE KEY IS SEVENTEEN.
(8.1 \# 10) If the two most common letters in a long ciphertext, encrypted by an affine transformation $C \equiv a P+b(\bmod 26)$, are X and Q , respectively, then what are the most likely values for a and b ?

Since the two most commonly occurring letters are X and Q , we theorize that the letter E is mapped to X and that T is mapped to Q . That is $4 \rightarrow 23$ and $19 \rightarrow 16$. Thus we consider the equations

$$
23 \equiv 4 a+b \quad(\bmod 26),
$$

and

$$
16 \equiv 19 a+b \quad(\bmod 26)
$$

Subtracting these two equations yields $11 a \equiv 7(\bmod 26)$. Since the inverse of 11 is 19 modulo 26 , we arrive at $a \equiv 3(\bmod 26)$ and then easily find that $b \equiv 11(\bmod 26)$. Thus the affine cipher in question is $C \equiv 3 P+11(\bmod 26)$.
(8.2 \# 6) Cryptanalyze the given ciphertext, which was encrypted using a Vigenère cipher.

A search for repeated triples yields three: UCY, HFT and UVB, which are separated by distances of 9,21 , and 15 letters. This suggests that the keyword length is $(9,21,15)=3$. Calculating the index of coincidence (IC) for the three subsets of the ciphertext formed by taking every third letter, we have ICs of $0.0766,0.0814$, and 0.07575 . Since these are near 0.065 , we have the correct keyword length. Now by performing letter frequency analysis on each of the three subsets, we find that the most frequent letters in the three sets are U, C and B. After trying different possible decodings of these letters based on the most frequently used letters in the English language, we find that the correct keyword is BOX. Using this to decrypt the message, we get, "To be or not to be, that is the question. Tis' nobler in the mind to suffer the slings and arrows of outrageous fortune." Note that there is a typo in the ciphertext: the block BNKWE in the third line should be BNWKE.
(8.2 \# 18(a)) How many pairs of letters remain unchanged when encryption is performed using the digraphic cipher

$$
\begin{aligned}
& C_{1} \equiv 4 P_{1}+5 P_{2} \quad(\bmod 26) \\
& C_{2} \equiv 3 P_{1}+P_{2} \quad(\bmod 26)
\end{aligned}
$$

We need to find letters P_{1} and P_{2} such that $P_{1} \equiv 4 P_{1}+5 P_{2}(\bmod 26)$ and $P_{2} \equiv 3 P_{1}+P_{2}$ $(\bmod 26)$. The first congruence gives us $3 P_{1}+5 P_{2} \equiv 0(\bmod 26)$ while the second gives $3 P_{1} \equiv 0(\bmod 26)$. Thus the second congruence gives $P_{1} \equiv 0(\bmod 26)$ and, using this information in the first, we see that $P_{2} \equiv 0(\bmod 26)$ as well. Thus the only pair of letters that is unchanged under the encryption is AA.

