Math 25: Solutions to Homework \# 5
(6.2 \# 8) Show that if p is prime and $2^{p}-1$ is composite, then $2^{p}-1$ is a pseudoprime to the base 2 .

Let $m=2^{p}-1$. Since p is prime, $2^{p} \equiv 2(\bmod p)$, so $p \mid 2^{p}-2$, hence $2^{p}-2=k p$ for some integer k. Then $2^{m-1}=2^{2^{p}-2}=2^{k p}$. Now $m=2^{p}-1 \mid 2^{k p}-1=2^{m-1}-1$, so $2^{m-1} \equiv 1$ $(\bmod m)$. Therefore, $m=2^{p}-1$ is a pseudoprime to the base 2 .
(6.2 \# 10) Suppose that a and n are relatively prime positive integers. Show that if n is a pseudoprime to the base a, then n is a pseudoprime to the base \bar{a}, where \bar{a} is an inverse of a modulo n.

Let \bar{a} be an inverse of a modulo m. Then since $a^{n-1} \equiv 1(\bmod n)$,

$$
(\bar{a})^{n-1} \equiv a^{n-1}(\bar{a})^{n-1} \equiv(a \bar{a})^{n-1} \equiv 1^{n-1} \equiv 1 \quad(\bmod n),
$$

so n is a pseudoprime to the base \bar{a}.
(6.2 \# 12) Show that 25 is a strong pseudoprime to the base 7 .

We can write $25-1=24=2^{3} \cdot 3$. Then

$$
7^{2 \cdot 3} \equiv\left(7^{2}\right)^{3} \equiv(49)^{3} \equiv(-1)^{3} \equiv-1 \quad(\bmod 7)
$$

so 25 passes Miller's test for the base 7 .
(6.3 \# 8) Show that if a is an integer such that a is not divisible by 3 or such that a is divisible by 9 , then $a^{7} \equiv a(\bmod 63)$.

By the corollary to Fermat's Little Theorem, $a^{7} \equiv a(\bmod 7)$. Suppose that $3 \nmid a$. Then $(a, 9)=1$ and $\phi(9)=6$, so by Euler's theorem, $a^{6} \equiv a^{\phi(9)} \equiv 1(\bmod 9)$, so also $a^{7} \equiv a$ $(\bmod 9)$. If $9 \mid a$ then $a \equiv 0(\bmod 9)$, so $a^{7} \equiv a \equiv 0(\bmod 9)$. Therefore in either case, we have $a^{7} \equiv a(\bmod 7)$ and $a^{7} \equiv a(\bmod 9)$. Since $(7,9)=1$, then $a^{7} \equiv a(\bmod 63)$.
(6.3 \# 10) Show that $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$, if a and b are relatively prime positive integers.

First, $a^{k} \equiv 0(\bmod a)$ and $b^{k} \equiv 0(\bmod b)$ for any positive integer k. Then by Euler's Theorem,

$$
a^{\phi(b)}+b^{\phi(a)} \equiv b^{\phi(a)} \equiv 1 \quad(\bmod a),
$$

and

$$
a^{\phi(b)}+b^{\phi(a)} \equiv a^{\phi(b)} \equiv 1 \quad(\bmod b) .
$$

Then since $(a, b)=1, a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod a b)$.
(7.1\# 8) Show that there is no positive integer n such that $\phi(n)=14$.

Suppose n is a positive integer with $\phi(n)=14$. We also know that if $n=p_{1}^{a_{1}} \cdots p_{t}^{a_{t}}$ then $\phi(n)=p_{1}^{a_{1}-1}\left(p_{1}-1\right) \cdots p_{t}^{a_{t}-1}\left(p_{t}-1\right)$. So no prime $p>15$ divides n, otherwise $\phi(n)>$ $p-1>14$. This leaves possible prime factors $2,3,5,7,11$, and 13 . But $5,7,11$ and 13 can all be eliminated since $4,6,10$, and 12 do not divide 14 . But if $n=2^{a} \cdot 3^{b}$ then $\phi(n)=2^{a-1}(2-1) \cdot 3^{b-1}(3-1)=2^{a} \cdot 3^{b-1}$, which is not divisible by 7 . Therefore there is no n for which $\phi(n)=14$.
(7.1\#32) Show that if m and n are positive integers with $m \mid n$, then $\phi(m) \mid \phi(n)$.

Suppose that $m \mid n$, and write $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. Then $m=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}$ where $0 \leq b_{j} \leq a_{j}$ for all $1 \leq j \leq k$. Then

$$
\frac{\phi(n)}{\phi(m)}=\frac{\prod_{j=1}^{k} p_{j}^{a_{j}-1}\left(p_{j}-1\right)}{\prod_{j=1}^{k} p_{j}^{b_{j}-1}\left(p_{j}-1\right)}=\prod_{j=1}^{k} p^{a_{j}-b_{j}}
$$

is an integer, so $\phi(m) \mid \phi(n)$.
(7.2 \# 4) For which positive integers n is the sum of divisors of n odd?

Let $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$. Then $\sigma(n)=\prod_{j=1}^{k} \frac{p^{a_{j}+1}-1}{p-1}$. In order for $\sigma(n)$ to be odd, each term in this product must be odd. If $p=2$, then $\frac{2^{a+1}-1}{2-1}=2^{a}-1$ is odd, for any positive integer a. If p is odd, then $\frac{p^{a+1}-1}{p-1}=1+p+p^{2}+\cdots+p^{a}$. Since each power of p is odd, this sum is odd exactly when a is even. Therefore $\sigma(n)$ is odd if and only if the power of every odd prime dividing n is even.
$(7.2 \# 22)$ Give a formula for $\sigma_{k}\left(p^{a}\right)$, where p is prime and a is a positive integer.

$$
\sigma_{k}\left(p^{a}\right)=1^{k}+p^{k}+p^{2 k}+\cdots+p^{a k}=\frac{p^{(a+1) k}-1}{p^{k}-1} .
$$

(7.3\#8) Show that any proper divisor of a deficient or perfect number is deficient.

Suppose that $a \mid n$ and $1<a<n$. We want to prove that if $\sigma(n) \leq 2 n$, then $\sigma(a)<2 a$. We will prove the contrapositive, namely, if $\sigma(a) \geq 2 a$, then $\sigma(n)>2 n$. There must be an integer k such that $a k=n$. Then if $c \mid a$, then $c k \mid a k=n$. Therefore

$$
\sigma(n)=\sum_{d \mid n} d>\sum_{c \mid a} k c=k \sigma(a) \geq 2 k a=2 n
$$

(7.3\#20) Find all 3-perfect numbers of the form $n=2^{k} \cdot 3 \cdot p$, where p is an odd prime.

First we note that $p \neq 3$, since then $n=2^{k} \cdot 3^{2}$, so $13=\sigma\left(3^{2}\right) \mid \sigma(n)$, and hence $\sigma(n) \neq 3 n$. So we may assume $p \neq 3$. If $n=2^{k} \cdot 3 \cdot p$ is 3 -perfect, then $\sigma(n)=3 n=2^{k} \cdot 3^{2} \cdot p$, but also $\sigma(n)=\sigma\left(2^{k}\right) \sigma(3) \sigma(p)=\left(2^{k+1}-1\right) \cdot 4(p-1)$, so we set

$$
2^{k} \cdot 3^{2} \cdot p=\left(2^{k+1}-1\right) \cdot 4(p-1)
$$

Since the right and left sides are equal, they must have the same prime power factorization, which is already given on the left. Then $k \geq 2$, so cancelling 4 from both sides, we have

$$
2^{k-2} \cdot 3^{2} \cdot p=\left(2^{k+1}-1\right)(p-1)
$$

Now p and $p-1$ are coprime, so p must divide $2^{k+1}-1$. Similarly, $2^{k+1}-1$ is odd, so 2^{k-2} must divide $p-1$. Then there are integers m and r such that

$$
2^{k-2} \cdot 3^{2} \cdot p=(p m)\left(2^{k-2} r\right)
$$

The only remaining factor on the left is 3^{2}, so there are three cases:
(a) $m=9$ and $r=1$,
(b) $m=r=3$, and
(c) $m=1$ and $r=9$.

In case (a), we have $2^{k+1}-1=9 p$ and $p+1=2^{k-2}$, so that $8(p+1)=2^{k+1}$. Substituting this into the first equation, we have $8(p+1)-1=9 p$, and $p=7$ is the only solution. Then $8=2^{k-2}$, so $k=5$. So the only possible n in this case is $n=2^{5} \cdot 3 \cdot 7=672$. Using a similar argument for case (b), we get $p=5$ and $k=3$, so $n=2^{3} \cdot 3 \cdot 5=120$. Using this method for case (c) we conclude that $p=-1$. Since this is not possible, there are no solutions in this case. Therefore the only numbers of this form that are 3-perfect are 672 and 120.

