
Math 25: Solutions to Homework # 5

(6.2 # 8) Show that if p is prime and 2p − 1 is composite, then 2p − 1 is a pseudoprime to
the base 2.

Let m = 2p − 1. Since p is prime, 2p ≡ 2 (mod p), so p | 2p − 2, hence 2p − 2 = kp for
some integer k. Then 2m−1 = 22p−2 = 2kp. Now m = 2p−1 | 2kp−1 = 2m−1−1, so 2m−1 ≡ 1
(mod m). Therefore, m = 2p − 1 is a pseudoprime to the base 2.

(6.2 # 10) Suppose that a and n are relatively prime positive integers. Show that if n is a
pseudoprime to the base a, then n is a pseudoprime to the base a, where a is an inverse of
a modulo n.

Let a be an inverse of a modulo m. Then since an−1 ≡ 1 (mod n),

(a)n−1 ≡ an−1(a)n−1 ≡ (aa)n−1 ≡ 1n−1 ≡ 1 (mod n),

so n is a pseudoprime to the base a.

(6.2 # 12) Show that 25 is a strong pseudoprime to the base 7.

We can write 25− 1 = 24 = 23 · 3. Then

72·3 ≡ (72)3 ≡ (49)3 ≡ (−1)3 ≡ −1 (mod 7),

so 25 passes Miller’s test for the base 7.

(6.3 # 8) Show that if a is an integer such that a is not divisible by 3 or such that a is
divisible by 9, then a7 ≡ a (mod 63).

By the corollary to Fermat’s Little Theorem, a7 ≡ a (mod 7). Suppose that 3 - a. Then
(a, 9) = 1 and φ(9) = 6, so by Euler’s theorem, a6 ≡ aφ(9) ≡ 1 (mod 9), so also a7 ≡ a
(mod 9). If 9 | a then a ≡ 0 (mod 9), so a7 ≡ a ≡ 0 (mod 9). Therefore in either case, we
have a7 ≡ a (mod 7) and a7 ≡ a (mod 9). Since (7, 9) = 1, then a7 ≡ a (mod 63).

(6.3 # 10) Show that aφ(b) + bφ(a) ≡ 1 (mod ab), if a and b are relatively prime positive
integers.

First, ak ≡ 0 (mod a) and bk ≡ 0 (mod b) for any positive integer k. Then by Euler’s
Theorem,

aφ(b) + bφ(a) ≡ bφ(a) ≡ 1 (mod a),

and

aφ(b) + bφ(a) ≡ aφ(b) ≡ 1 (mod b).

Then since (a, b) = 1, aφ(b) + bφ(a) ≡ 1 (mod ab).

(7.1# 8) Show that there is no positive integer n such that φ(n) = 14.



Suppose n is a positive integer with φ(n) = 14. We also know that if n = pa1
1 · · · pat

t then
φ(n) = pa1−1

1 (p1 − 1) · · · pat−1
t (pt − 1). So no prime p > 15 divides n, otherwise φ(n) >

p − 1 > 14. This leaves possible prime factors 2, 3, 5, 7, 11, and 13. But 5, 7, 11 and
13 can all be eliminated since 4, 6, 10, and 12 do not divide 14. But if n = 2a · 3b then
φ(n) = 2a−1(2− 1) · 3b−1(3− 1) = 2a · 3b−1, which is not divisible by 7. Therefore there is no
n for which φ(n) = 14.

(7.1 # 32) Show that if m and n are positive integers with m | n, then φ(m) | φ(n).

Suppose that m | n, and write n = pa1
1 · · · pak

k . Then m = pb1
1 · · · pbk

k where 0 ≤ bj ≤ aj for
all 1 ≤ j ≤ k. Then
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aj−1
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bj−1
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is an integer, so φ(m) | φ(n).

(7.2 # 4) For which positive integers n is the sum of divisors of n odd?

Let n = pa1
1 · · · pak

k . Then σ(n) =
∏k

j=1
paj+1−1

p−1
. In order for σ(n) to be odd, each term in

this product must be odd. If p = 2, then 2a+1−1
2−1

= 2a − 1 is odd, for any positive integer a.

If p is odd, then pa+1−1
p−1

= 1 + p + p2 + · · ·+ pa. Since each power of p is odd, this sum is odd

exactly when a is even. Therefore σ(n) is odd if and only if the power of every odd prime
dividing n is even.

(7.2 # 22) Give a formula for σk(p
a), where p is prime and a is a positive integer.

σk(p
a) = 1k + pk + p2k + · · ·+ pak =

p(a+1)k − 1

pk − 1
.

(7.3 # 8) Show that any proper divisor of a deficient or perfect number is deficient.

Suppose that a | n and 1 < a < n. We want to prove that if σ(n) ≤ 2n, then σ(a) < 2a.
We will prove the contrapositive, namely, if σ(a) ≥ 2a, then σ(n) > 2n. There must be an
integer k such that ak = n. Then if c | a, then ck | ak = n. Therefore

σ(n) =
∑
d|n

d >
∑
c|a

kc = kσ(a) ≥ 2ka = 2n.

(7.3 # 20) Find all 3-perfect numbers of the form n = 2k · 3 · p, where p is an odd prime.

First we note that p 6= 3, since then n = 2k ·32, so 13 = σ(32) | σ(n), and hence σ(n) 6= 3n.
So we may assume p 6= 3. If n = 2k · 3 · p is 3-perfect, then σ(n) = 3n = 2k · 32 · p, but also
σ(n) = σ(2k)σ(3)σ(p) = (2k+1 − 1) · 4(p− 1), so we set

2k · 32 · p = (2k+1 − 1) · 4(p− 1).



Since the right and left sides are equal, they must have the same prime power factorization,
which is already given on the left. Then k ≥ 2, so cancelling 4 from both sides, we have

2k−2 · 32 · p = (2k+1 − 1)(p− 1).

Now p and p− 1 are coprime, so p must divide 2k+1 − 1. Similarly, 2k+1 − 1 is odd, so 2k−2

must divide p− 1. Then there are integers m and r such that

2k−2 · 32 · p = (pm)(2k−2r).

The only remaining factor on the left is 32, so there are three cases:

(a) m = 9 and r = 1,
(b) m = r = 3, and
(c) m = 1 and r = 9.

In case (a), we have 2k+1 − 1 = 9p and p + 1 = 2k−2, so that 8(p + 1) = 2k+1. Substituting
this into the first equation, we have 8(p + 1)− 1 = 9p, and p = 7 is the only solution. Then
8 = 2k−2, so k = 5. So the only possible n in this case is n = 25 · 3 · 7 = 672. Using a similar
argument for case (b), we get p = 5 and k = 3, so n = 23 · 3 · 5 = 120. Using this method for
case (c) we conclude that p = −1. Since this is not possible, there are no solutions in this
case. Therefore the only numbers of this form that are 3-perfect are 672 and 120.


