
Math 25: Solutions to Homework # 4

(4.3 # 10) Find an integer that leaves a remainder of 9 when it is divided by either 10 or
11, but that is divisible by 13.

We use the Chinese Remainder Theorem to solve the system of congruences

x ≡ 9 (mod 10)

x ≡ 9 (mod 11)

x ≡ 0 (mod 13).

There is a unique solution modulo 10 ·11 ·13 = 1430. Let M1 = 11 ·13 = 143, M2 = 10 ·13 =
130, and M3 = 10 · 11 = 110. Then the solution is

x ≡ 9M1y1 + 9M2y2 + 0M3, y3 (mod 1430)

where

143y1 ≡ 1 (mod 10)

130y2 ≡ 1 (mod 11)

110y3 ≡ 1 (mod 13).

Then 3y1 ≡ 1 (mod 10), so y1 ≡ 7 (mod 10), and 9y2 ≡ 1 (mod 11), so y2 ≡ 5 (mod 11).
We don’t need to find y3 since the third term in the sum is zero. Then

x ≡ 9 · 143 · 7 + 9 · 130 · 5 ≡ 559 (mod 1430)

so 559 is a particular solution.

(4.6 # 2(b)) Use the Pollard rho method to factor the integer 1387, with x0 = 3 and
f(x) = x2 + 1.

Iterating the formula xj+1 ≡ x2
j + 1 (mod 1387), we have the sequence x0 = 3, x1 = 10,

x2 = 101, x3 = 493, x4 = 325, x5 = 214, x6 = 26, x7 = 677, x8 = 620, x9 = 202, x10 = 582,
x11 = 297, x12 = 829. Then

(x2 − x1, 1387) = (91, 1387) = 1

(x4 − x4, 1387) = (224, 1387) = 1

(x6 − x3, 1387) = (467, 1387) = 1

(x8 − x4, 1387) = (295, 1387) = 1

(x10 − x5, 1387) = (368, 1387) = 1

(x12 − x6, 1387) = (803, 1387) = 73.

Therefore 1387 = 73 · 19.

(5.1 # 22) An old receipt has faded. It reads 88 chickens at a total cost of $x4.2y, where x
and y are unreadable digits. How much did each chicken cost?



The total cost was x42y cents. If 88 divides this number, then both 8 and 11 must divide
it. We know that 8 | x42y if 8 | 42y. Thus we must have y = 4 since 424 is the only number
of this form divisible by 8. Now 11 | x424 only if 11 divides x − 4 + 2 − 4 = x − 6. Thus
x = 6, so the total cost was 64.24, and each chicken cost 73 cents.

(5.1 # 24(a)) Check the multiplication 875, 961 ·2753 = 2, 410, 520, 633 by casting out nines.

Checking the product mod 9, we see that 875961 ≡ 8 + 7 + 5 + 9 + 6 + 1 ≡ 0 (mod 9) and
2753 ≡ 2 + 7 + 5 + 3 ≡ 8 (mod 9), but 2, 410, 520, 633 ≡ 2 + 4 + 1 + 5 + 2 + 6 + 3 + 3 ≡ 8
(mod 9). Since 0 · 8 6≡ 8 (mod 9), the multiplication does not hold.

(5.2 # 6) Show that days with the same calendar date in two different years of the same
century, 28, 56 and 84 years apart, fall on the identical day of the week.

Let Y be defined as in the perpetual calendar. Then

Y + 28 +

[
Y + 28

4

]
= Y + 28 +

[
Y

4

]
+ 7 ≡ Y +

[
Y

4

]
(mod 7).

The same holds when 28 is replaced by 56 or 84, since each of these numbers is divisible by
both 4 and 7. Therefore changing the year to another year in the same century 28, 56 or 84
years apart does not change the day of the week.

(5.5 # 8) The bank identification number consists of digits x1x2 · · ·x9 where x9 ≡ 7x1 +
3x2 + 9x3 + 7x4 + 3x5 + 9x6 + 7x7 + 3x7 (mod 10).

(a) What is the check digit following the eight-digit identification number 00185403?

7 · 0 + 3 · 0 + 9 · 1 + 7 · 8 + 3 · 5 + 9 · 4 + 7 · 0 + 3 · 3 ≡ 5 (mod 10)

so x9 = 5.

(b) What single errors does this check digit detect?

If xj is replaced by xj + a where a 6≡ 0 (mod 10) then the sum will differ by ka where
k is 3, 7 or 9. Then ka 6≡ 0 (mod 10), so the error will be detected. Therefore every
single error is detected.

(c) Which transposition of two digits does this scheme detect?

The scheme does not detect the transposition of any two digits that have the same
weight in the sum. Also, a transposition is not detected if the two digits differ by 5, but
the scheme will detect all other transposition errors. To see this, note that a transposition
of the digits a and b (a 6= b) will not be detected if 7a + 3b ≡ 3a + 7b (mod 10). Then
4a ≡ 4b (mod 10), so 10 | 4(a − b). Since a 6= b, this implies that 5 | a − b. Similarly if
7a + 9b ≡ 9a + 7b (mod 10) or if 3a + 9b ≡ 9a + 3b (mod 10), then a and b differ by 5.



(5.5 # 12(a)) Suppose that one digit in the ISBN 0 − 19 − 8?3804 − 9 has been smudged.
What should the missing digit be?

1 · 0 + 2 · 1 + 3 · 9 + 4 · 8 + 5x + 6 · 3 + 7 · 8 + 8 · 0 + 9 · 4 + 10 · 9 ≡ 5x + 8 (mod 11)

so solving 5x + 8 ≡ 0 (mod 11), we have 5x ≡ 3 (mod 11) so x = 5.

(6.1 # 12) Using Fermat’s Little Theorem, find the least positive residue of 21000000 modulo
17.

By Fermat’s Little Theorem, 216 ≡ 1 (mod 17), and 16 · 62500 = 1000000, so 21000000 =
(216)62500 ≡ 1 (mod 17).

(6.1 # 18) Show that if n is odd and 3 - n, then n2 ≡ 1 (mod 24).

By Fermat’s Little Theorem, since 3 - n, n2 ≡ 1 (mod 3). Since n is odd, n is 1, 3, 5, or
7 modulo 8. The square of each of these numbers modulo 8 is 1, so n2 ≡ 1 (mod 8). Then
since (8, 3) = 1, and 8 · 3 = 24, n2 ≡ 1 (mod 24).

(6.1 # 24) Show that 1p + 2p + 3p + · · ·+ (p− 1)p ≡ 0 (mod p) whenever p is an odd prime.

By the corollary to Fermat’s Little Theorem, ap ≡ a (mod p) for every integer a. Then

1p + 2p + 3p + · · · + (p − 1)p ≡ 1 + 2 + 3 + · · · + (p − 1) ≡ p(p − 1)

2
≡ 0 (mod p),

since 2 | p − 1.

(6.1 # 26) Use the Pollard p − 1 method to find a divisor of 689.

Using the formula rk ≡ rk
k−1 (mod 689), and checking (rk−1, 689), we have r1 = 2, r2 = 4,

r3 = 64, and r4 = 66, with (65, 689) = 13. Hence 689 = 13 · 53.


