Math 25: Solutions to Homework \# 4
(4.3 \# 10) Find an integer that leaves a remainder of 9 when it is divided by either 10 or 11, but that is divisible by 13 .

We use the Chinese Remainder Theorem to solve the system of congruences

$$
\begin{aligned}
& x \equiv 9 \\
& x \equiv 9 \\
& (\bmod 10) \\
& x \equiv 0
\end{aligned} \quad(\bmod 11) .
$$

There is a unique solution modulo $10 \cdot 11 \cdot 13=1430$. Let $M_{1}=11 \cdot 13=143, M_{2}=10 \cdot 13=$ 130 , and $M_{3}=10 \cdot 11=110$. Then the solution is

$$
x \equiv 9 M_{1} y_{1}+9 M_{2} y_{2}+0 M_{3}, y_{3} \quad(\bmod 1430)
$$

where

$$
\begin{aligned}
& 143 y_{1} \equiv 1 \quad(\bmod 10) \\
& 130 y_{2} \equiv 1 \quad(\bmod 11) \\
& 110 y_{3} \equiv 1 \quad(\bmod 13)
\end{aligned}
$$

Then $3 y_{1} \equiv 1(\bmod 10)$, so $y_{1} \equiv 7(\bmod 10)$, and $9 y_{2} \equiv 1(\bmod 11)$, so $y_{2} \equiv 5(\bmod 11)$. We don't need to find y_{3} since the third term in the sum is zero. Then

$$
x \equiv 9 \cdot 143 \cdot 7+9 \cdot 130 \cdot 5 \equiv 559 \quad(\bmod 1430)
$$

so 559 is a particular solution.
(4.6 \# 2(b)) Use the Pollard rho method to factor the integer 1387, with $x_{0}=3$ and $f(x)=x^{2}+1$.

Iterating the formula $x_{j+1} \equiv x_{j}^{2}+1(\bmod 1387)$, we have the sequence $x_{0}=3, x_{1}=10$, $x_{2}=101, x_{3}=493, x_{4}=325, x_{5}=214, x_{6}=26, x_{7}=677, x_{8}=620, x_{9}=202, x_{10}=582$, $x_{11}=297, x_{12}=829$. Then

$$
\begin{aligned}
\left(x_{2}-x_{1}, 1387\right) & =(91,1387)=1 \\
\left(x_{4}-x_{4}, 1387\right) & =(224,1387)=1 \\
\left(x_{6}-x_{3}, 1387\right) & =(467,1387)=1 \\
\left(x_{8}-x_{4}, 1387\right) & =(295,1387)=1 \\
\left(x_{10}-x_{5}, 1387\right) & =(368,1387)=1 \\
\left(x_{12}-x_{6}, 1387\right) & =(803,1387)=73
\end{aligned}
$$

Therefore $1387=73 \cdot 19$.
(5.1 \# 22) An old receipt has faded. It reads 88 chickens at a total cost of $\$ x 4.2 y$, where x and y are unreadable digits. How much did each chicken cost?

The total cost was $x 42 y$ cents. If 88 divides this number, then both 8 and 11 must divide it. We know that $8 \mid x 42 y$ if $8 \mid 42 y$. Thus we must have $y=4$ since 424 is the only number of this form divisible by 8 . Now $11 \mid x 424$ only if 11 divides $x-4+2-4=x-6$. Thus $x=6$, so the total cost was 64.24 , and each chicken cost 73 cents.
(5.1 \# 24(a)) Check the multiplication $875,961 \cdot 2753=2,410,520,633$ by casting out nines.

Checking the product mod 9 , we see that $875961 \equiv 8+7+5+9+6+1 \equiv 0(\bmod 9)$ and $2753 \equiv 2+7+5+3 \equiv 8(\bmod 9)$, but $2,410,520,633 \equiv 2+4+1+5+2+6+3+3 \equiv 8$ $(\bmod 9)$. Since $0 \cdot 8 \not \equiv 8(\bmod 9)$, the multiplication does not hold.
(5.2 \# 6) Show that days with the same calendar date in two different years of the same century, 28,56 and 84 years apart, fall on the identical day of the week.

Let Y be defined as in the perpetual calendar. Then

$$
Y+28+\left[\frac{Y+28}{4}\right]=Y+28+\left[\frac{Y}{4}\right]+7 \equiv Y+\left[\frac{Y}{4}\right] \quad(\bmod 7) .
$$

The same holds when 28 is replaced by 56 or 84 , since each of these numbers is divisible by both 4 and 7 . Therefore changing the year to another year in the same century 28,56 or 84 years apart does not change the day of the week.
(5.5 \# 8) The bank identification number consists of digits $x_{1} x_{2} \cdots x_{9}$ where $x_{9} \equiv 7 x_{1}+$ $3 x_{2}+9 x_{3}+7 x_{4}+3 x_{5}+9 x_{6}+7 x_{7}+3 x_{7}(\bmod 10)$.
(a) What is the check digit following the eight-digit identification number 00185403 ?

$$
\begin{aligned}
& \quad 7 \cdot 0+3 \cdot 0+9 \cdot 1+7 \cdot 8+3 \cdot 5+9 \cdot 4+7 \cdot 0+3 \cdot 3 \equiv 5 \quad(\bmod 10) \\
& \text { so } x_{9}=5
\end{aligned}
$$

(b) What single errors does this check digit detect?

If x_{j} is replaced by $x_{j}+a$ where $a \not \equiv 0(\bmod 10)$ then the sum will differ by $k a$ where k is 3,7 or 9 . Then $k a \not \equiv 0(\bmod 10)$, so the error will be detected. Therefore every single error is detected.
(c) Which transposition of two digits does this scheme detect?

The scheme does not detect the transposition of any two digits that have the same weight in the sum. Also, a transposition is not detected if the two digits differ by 5 , but the scheme will detect all other transposition errors. To see this, note that a transposition of the digits a and $b(a \neq b)$ will not be detected if $7 a+3 b \equiv 3 a+7 b(\bmod 10)$. Then $4 a \equiv 4 b(\bmod 10)$, so $10 \mid 4(a-b)$. Since $a \neq b$, this implies that $5 \mid a-b$. Similarly if $7 a+9 b \equiv 9 a+7 b(\bmod 10)$ or if $3 a+9 b \equiv 9 a+3 b(\bmod 10)$, then a and b differ by 5 .
(5.5 \# 12(a)) Suppose that one digit in the ISBN $0-19-8 ? 3804-9$ has been smudged. What should the missing digit be?
$1 \cdot 0+2 \cdot 1+3 \cdot 9+4 \cdot 8+5 x+6 \cdot 3+7 \cdot 8+8 \cdot 0+9 \cdot 4+10 \cdot 9 \equiv 5 x+8 \quad(\bmod 11)$ so solving $5 x+8 \equiv 0(\bmod 11)$, we have $5 x \equiv 3(\bmod 11)$ so $x=5$.
(6.1 \# 12) Using Fermat's Little Theorem, find the least positive residue of $2^{1000000}$ modulo 17.

By Fermat's Little Theorem, $2^{16} \equiv 1(\bmod 17)$, and $16 \cdot 62500=1000000$, so $2^{1000000}=$ $\left(2^{16}\right)^{62500} \equiv 1(\bmod 17)$ 。
(6.1 \# 18) Show that if n is odd and $3 \nmid n$, then $n^{2} \equiv 1(\bmod 24)$.

By Fermat's Little Theorem, since $3 \nmid n, n^{2} \equiv 1(\bmod 3)$. Since n is odd, n is $1,3,5$, or 7 modulo 8 . The square of each of these numbers modulo 8 is 1 , so $n^{2} \equiv 1(\bmod 8)$. Then since $(8,3)=1$, and $8 \cdot 3=24, n^{2} \equiv 1(\bmod 24)$.
(6.1 \# 24) Show that $1^{p}+2^{p}+3^{p}+\cdots+(p-1)^{p} \equiv 0(\bmod p)$ whenever p is an odd prime.

By the corollary to Fermat's Little Theorem, $a^{p} \equiv a(\bmod p)$ for every integer a. Then

$$
1^{p}+2^{p}+3^{p}+\cdots+(p-1)^{p} \equiv 1+2+3+\cdots+(p-1) \equiv \frac{p(p-1)}{2} \equiv 0 \quad(\bmod p)
$$

since $2 \mid p-1$.
(6.1 \# 26) Use the Pollard $p-1$ method to find a divisor of 689 .

Using the formula $r_{k} \equiv r_{k-1}^{k}(\bmod 689)$, and checking $\left(r_{k}-1,689\right)$, we have $r_{1}=2, r_{2}=4$, $r_{3}=64$, and $r_{4}=66$, with $(65,689)=13$. Hence $689=13 \cdot 53$.

