
Math 25: Solutions to Homework # 3

(3.5 # 44) Show that 3
√

5 is irrational.

(a) Suppose 3
√

5 is rational. Then we can write 3
√

5 = a/b where (a, b) = 1 and b 6= 0.
Then 5 = a3/b3, so 5b3 = a3. Now 5 | a3, so 5 | a. Then we can write a = 5k for some integer
k, so 5b3 = 125k3, and hence 5 | b3, so 5 | b. But this is a contradiction since (a, b) = 1.
Therefore 3

√
5 is irrational.

(b) Since 3
√

5 is not an integer, and it is the root of the polynomial x3 − 5, it is irrational,
by Theorem 3.18.

(3.5 # 74) Show that if p is prime and 1 ≤ k < p, then the binomial coefficient
(

p
k

)
is divisible

by p.

The binomial coefficient(
p

k

)
=

p!

k!(p− k)!
=

1 · 2 · · · p
1 · 2 · · · k · 1 · 2 · · · (p− k)

.

Since k < p, all the factors in the denominator are less than p, so they do not cancel the p
in the numerator. Therefore, p divides

(
p
k

)
.

(3.6 # 16) Show that if a is a positive integer and am + 1 is an odd prime, then m = 2n for
some positive integer n.

Suppose that am + 1 is an odd prime. If m = k` with ` > 1 odd, then we can factor

am + 1 = (ak + 1)(ak(`−1) − ak(`−2) + · · · − ak + 1).

Since k < m, ak +1 < am +1, and since a > 0, ak +1 > 1, so this is a nontrivial factorization,
and hence a contradiction. Therefore m must have no odd factors, so it must be of the form
m = 2n.

(3.6 # 18) Use the fact that every prime divisor of F4 = 224
+1 is of the form 26k+1 = 64k+1

to verify that F4 is prime.

Any prime factor of F4 must be of the form 64k + 1, and must be less than or equal to
[
√

65, 537] = 256 = 28. Then 64 + 1 = 65 is not prime, 64 · 2 + 1 = 129 is not prime, and
64 · 3 + 1 = 193 - F4. The next possible factor 64 · 4 + 1 = 28 + 1 is too big, so F4 is prime.



(4.1 # 12) Construct a table for addition modulo 6.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

(4.1 # 14) Construct a table for multiplication modulo 6.

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

(4.1 # 20) Show that if n is an odd positive integer or if n is a positive integer divisible by
4, then

13 + 23 + · · ·+ (n− 1)3 ≡ 0 (mod n).

Is this statement true if n is even but not divisible by 4?

By a problem from the first HW,

13 + 23 + · · ·+ (n− 1)3 =

[
n(n− 1)

2

]2

=
n2(n− 1)2

4
.

If 4 | n, then n = 4k for some integer k, so

n2(n− 1)2

4
= kn(n− 1)2 ≡ 0 (mod n).

If n is odd then n− 1 is even, so n− 1 = 2m for some integer m. Then

n2(n− 1)2

4
= n2m2 ≡ 0 (mod n).

If n is even but not divisible by 4, then n = 2` for some odd integer `, and

n2(n− 1)2

4
= `2(n− 1)2 = `2n2 − 2`2n + `2 ≡ `2 (mod n),

and since ` is odd and n is even, n - `2, so `2 6≡ 0 (mod n).

(4.1 # 22) Show by induction that if n is a positive integer, then 4n ≡ 1 + 3n (mod 9).

For the base case, 4 ≡ 1+3 (mod 9). For the induction hypothesis, assume that 4n ≡ 1+3n
(mod 9) for some positive integer n. Then

4n+1 = 4 · 4n ≡ 4(1 + 3n) ≡ 4 + 12n ≡ 4 + 3n ≡ 1 + 3(n + 1) (mod 9).

Therefore 4n ≡ 1 + 3n (mod 9) for all positive integers n.



(4.1 # 26) Show that if p is prime, then the only solutions of the congruence x2 ≡ x (mod p)
are those integers x such that x ≡ 0 or 1 (mod p).

If x2 ≡ x (mod p), then x(x − 1) ≡ 0 (mod p). Thus p | x(x − 1), so p | x or p | x − 1.
Hence the only solutions are x ≡ 0 (mod p) or x ≡ 1 (mod p).

(4.2 # 2) Find all solutions to the following linear congruences.

(b) 6x ≡ 3 (mod 9).

Since (6, 9) = 3, there are 3 incongruent solutions. It’s easy to see that x ≡ 2 (mod 9)
is one solution. Then since 9/3 = 3, the other solutions are x ≡ 2 + 3 ≡ 5 (mod 9) and
x ≡ 2 + 6 ≡ 8 (mod 9).

(c) 17x ≡ 14 (mod 21)

Since (17, 21) = 1, there is a unique solution modulo 21. Using the Euclidean Algorithm
we find that 17(5)−21(4) = 1, so multiplying by 14, we have 17(70)−21(56) = 14. Therefore
the unique solution is x ≡ 70 ≡ 7 (mod 21).

(d) 15x ≡ 9 (mod 25).

Since (15, 25) = 5 and 5 - 9, there are no solutions.

(4.2 # 10) Determine which integers a, where 1 ≤ a ≤ 14, have an inverse moduo 14, and
find the inverse of each of these integers modulo 14.

The numbers a with an inverse modulo 14 are those for which (a, 14) = 1: 1, 3, 5, 9, 11,
and 13. The inverse of each of these integers modulo 14 is also in that list, since if ab ≡ 1
(mod m), then both a and b have an inverse modulo m. So we see that 1 = 1, 3 = 5, 5 = 3,
9 = 11, 11 = 9, and 13 = 13.

(4.2 # 18) Show that if p is an odd prime and a is a positive integer not divisible by p, then
the congruence x2 ≡ a (mod p) has either no solution or exactly two incongruenct solutions.

If the congruence has no solutions, we are done, so suppose that it has at least one
solution c. Then c2 ≡ a (mod p), so also (−c)2 ≡ a (mod p). If c ≡ −c (mod p), then
2c ≡ 0 (mod p). Since p is odd, this implies that p | c. But then a ≡ c2 ≡ 0 (mod p). This
is a contradiction since p - a. Therefore c and −c are incongruent solutions. Now suppose b
is another solution. Then b2 ≡ c2 (mod p), so (b + c)(b − c) ≡ b2 − c2 ≡ 0 (mod p). Then
either p|(b + c) or p|(b− c), so b ≡ ±c (mod p). Therefore there are exactly two inconruent
solutions modulo p.

(4.3 # 12) If eggs are removed from a baseket 2, 3, 4, 5, and 6 at a time, there remain,
respectively, 1, 2, 3, 4, and 5 eggs. But if the eggs are removed 7 at a time, no eggs remain.
What is the least number of eggs that could have been in the basket?



We need to find the least positive integer solution to the system of congruences

x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 4)

x ≡ 4 (mod 5)

x ≡ 5 (mod 6)

x ≡ 0 (mod 7).

Since the moduli are not pairwise coprime, we can’t use the Chinese Remainder Theorem.
However, we notice from the first and fourth congruences that x must end in a 9, and from
the last congruence, it must be a multiple of 7. Since 49 6≡ 2 (mod 3), we try the next
number satisfying these properties, which is 119. It is easy to check that 119 satisfies every
congruence.

(3.3 # 14(b)) Use induction to show that if a1, a2, . . . , an are integers, and b is another integer
such that (a1, b) = (a2, b) = · · · = (an, b) = 1, then (a1a2 · · · an, b) = 1.

The base case is trivial. Suppose the statement is true for n. Now suppose that (a1, b) =
(a2, b) = · · · = (an, b) = (an+1, b) = 1. By the induction hypothesis, (a1a2 · · · an, b) = 1, so
there are integers s and t such that

a1a2 · · · ans + bt = 1.

Multiplying through by an+1, we have

a1a2 · · · anan+1s + an+1bt = an+1.

Also, since (an+1, b) = 1, we have integers e and f such that an+1e + bf = 1. Substituting
for an+1, we have

(a1a2 · · · anan+1s + an+1bt)e + bf = 1.

Rewriting, we have
(a1a2 · · · anan+1(se) + b(an+1te + f) = 1,

so (a1a2 · · · anan+1, b) = 1. Therefore, the statement is true for all positive integers n.


