Math 25: Solutions to Homework \# 3
(3.5 \# 44) Show that $\sqrt[3]{5}$ is irrational.
(a) Suppose $\sqrt[3]{5}$ is rational. Then we can write $\sqrt[3]{5}=a / b$ where $(a, b)=1$ and $b \neq 0$. Then $5=a^{3} / b^{3}$, so $5 b^{3}=a^{3}$. Now $5 \mid a^{3}$, so $5 \mid a$. Then we can write $a=5 k$ for some integer k, so $5 b^{3}=125 k^{3}$, and hence $5 \mid b^{3}$, so $5 \mid b$. But this is a contradiction since $(a, b)=1$. Therefore $\sqrt[3]{5}$ is irrational.
(b) Since $\sqrt[3]{5}$ is not an integer, and it is the root of the polynomial $x^{3}-5$, it is irrational, by Theorem 3.18.
(3.5 \# 74) Show that if p is prime and $1 \leq k<p$, then the binomial coefficient $\binom{p}{k}$ is divisible by p.

The binomial coefficient

$$
\binom{p}{k}=\frac{p!}{k!(p-k)!}=\frac{1 \cdot 2 \cdots p}{1 \cdot 2 \cdots k \cdot 1 \cdot 2 \cdots(p-k)} .
$$

Since $k<p$, all the factors in the denominator are less than p, so they do not cancel the p in the numerator. Therefore, p divides $\binom{p}{k}$.
(3.6 \# 16) Show that if a is a positive integer and $a^{m}+1$ is an odd prime, then $m=2^{n}$ for some positive integer n.

Suppose that $a^{m}+1$ is an odd prime. If $m=k \ell$ with $\ell>1$ odd, then we can factor

$$
a^{m}+1=\left(a^{k}+1\right)\left(a^{k(\ell-1)}-a^{k(\ell-2)}+\cdots-a^{k}+1\right) .
$$

Since $k<m, a^{k}+1<a^{m}+1$, and since $a>0, a^{k}+1>1$, so this is a nontrivial factorization, and hence a contradiction. Therefore m must have no odd factors, so it must be of the form $m=2^{n}$.
(3.6 \# 18) Use the fact that every prime divisor of $F_{4}=2^{2^{4}}+1$ is of the form $2^{6} k+1=64 k+1$ to verify that F_{4} is prime.

Any prime factor of F_{4} must be of the form $64 k+1$, and must be less than or equal to $[\sqrt{65,537}]=256=2^{8}$. Then $64+1=65$ is not prime, $64 \cdot 2+1=129$ is not prime, and $64 \cdot 3+1=193 \nmid F_{4}$. The next possible factor $64 \cdot 4+1=2^{8}+1$ is too big, so F_{4} is prime.
(4.1 \# 12) Construct a table for addition modulo 6.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

(4.1 \# 14) Construct a table for multiplication modulo 6.

\times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

(4.1 \# 20) Show that if n is an odd positive integer or if n is a positive integer divisible by 4 , then

$$
1^{3}+2^{3}+\cdots+(n-1)^{3} \equiv 0 \quad(\bmod n)
$$

Is this statement true if n is even but not divisible by 4 ?
By a problem from the first HW,

$$
1^{3}+2^{3}+\cdots+(n-1)^{3}=\left[\frac{n(n-1)}{2}\right]^{2}=\frac{n^{2}(n-1)^{2}}{4}
$$

If $4 \mid n$, then $n=4 k$ for some integer k, so

$$
\frac{n^{2}(n-1)^{2}}{4}=k n(n-1)^{2} \equiv 0 \quad(\bmod n)
$$

If n is odd then $n-1$ is even, so $n-1=2 m$ for some integer m. Then

$$
\frac{n^{2}(n-1)^{2}}{4}=n^{2} m^{2} \equiv 0 \quad(\bmod n)
$$

If n is even but not divisible by 4 , then $n=2 \ell$ for some odd integer ℓ, and

$$
\frac{n^{2}(n-1)^{2}}{4}=\ell^{2}(n-1)^{2}=\ell^{2} n^{2}-2 \ell^{2} n+\ell^{2} \equiv \ell^{2} \quad(\bmod n)
$$

and since ℓ is odd and n is even, $n \nmid \ell^{2}$, so $\ell^{2} \not \equiv 0(\bmod n)$.
(4.1 \# 22) Show by induction that if n is a positive integer, then $4^{n} \equiv 1+3 n(\bmod 9)$.

For the base case, $4 \equiv 1+3(\bmod 9)$. For the induction hypothesis, assume that $4^{n} \equiv 1+3 n$ $(\bmod 9)$ for some positive integer n. Then

$$
4^{n+1}=4 \cdot 4^{n} \equiv 4(1+3 n) \equiv 4+12 n \equiv 4+3 n \equiv 1+3(n+1) \quad(\bmod 9)
$$

Therefore $4^{n} \equiv 1+3 n(\bmod 9)$ for all positive integers n.
(4.1 \# 26) Show that if p is prime, then the only solutions of the congruence $x^{2} \equiv x(\bmod p)$ are those integers x such that $x \equiv 0$ or $1(\bmod p)$.

If $x^{2} \equiv x(\bmod p)$, then $x(x-1) \equiv 0(\bmod p)$. Thus $p \mid x(x-1)$, so $p \mid x$ or $p \mid x-1$. Hence the only solutions are $x \equiv 0(\bmod p)$ or $x \equiv 1(\bmod p)$.
(4.2 \# 2) Find all solutions to the following linear congruences.
(b) $6 x \equiv 3(\bmod 9)$.

Since $(6,9)=3$, there are 3 incongruent solutions. It's easy to see that $x \equiv 2(\bmod 9)$ is one solution. Then since $9 / 3=3$, the other solutions are $x \equiv 2+3 \equiv 5(\bmod 9)$ and $x \equiv 2+6 \equiv 8(\bmod 9)$.
(c) $17 x \equiv 14(\bmod 21)$

Since $(17,21)=1$, there is a unique solution modulo 21. Using the Euclidean Algorithm we find that $17(5)-21(4)=1$, so multiplying by 14 , we have $17(70)-21(56)=14$. Therefore the unique solution is $x \equiv 70 \equiv 7(\bmod 21)$.
(d) $15 x \equiv 9(\bmod 25)$.

Since $(15,25)=5$ and $5 \nmid 9$, there are no solutions.
(4.2 \# 10) Determine which integers a, where $1 \leq a \leq 14$, have an inverse moduo 14 , and find the inverse of each of these integers modulo 14.

The numbers a with an inverse modulo 14 are those for which $(a, 14)=1: 1,3,5,9,11$, and 13. The inverse of each of these integers modulo 14 is also in that list, since if $a b \equiv 1$ $(\bmod m)$, then both a and b have an inverse modulo m. So we see that $\overline{1}=1, \overline{3}=5, \overline{5}=3$, $\overline{9}=11, \overline{11}=9$, and $\overline{13}=13$.
(4.2 \# 18) Show that if p is an odd prime and a is a positive integer not divisible by p, then the congruence $x^{2} \equiv a(\bmod p)$ has either no solution or exactly two incongruenct solutions.

If the congruence has no solutions, we are done, so suppose that it has at least one solution c. Then $c^{2} \equiv a(\bmod p)$, so also $(-c)^{2} \equiv a(\bmod p)$. If $c \equiv-c(\bmod p)$, then $2 c \equiv 0(\bmod p)$. Since p is odd, this implies that $p \mid c$. But then $a \equiv c^{2} \equiv 0(\bmod p)$. This is a contradiction since $p \nmid a$. Therefore c and $-c$ are incongruent solutions. Now suppose b is another solution. Then $b^{2} \equiv c^{2}(\bmod p)$, so $(b+c)(b-c) \equiv b^{2}-c^{2} \equiv 0(\bmod p)$. Then either $p \mid(b+c)$ or $p \mid(b-c)$, so $b \equiv \pm c(\bmod p)$. Therefore there are exactly two inconruent solutions modulo p.
(4.3 \# 12) If eggs are removed from a baseket $2,3,4,5$, and 6 at a time, there remain, respectively, $1,2,3,4$, and 5 eggs. But if the eggs are removed 7 at a time, no eggs remain. What is the least number of eggs that could have been in the basket?

We need to find the least positive integer solution to the system of congruences

$$
\begin{aligned}
& x \equiv 1 \quad(\bmod 2) \\
& x \equiv 2 \quad(\bmod 3) \\
& x \equiv 3 \quad(\bmod 4) \\
& x \equiv 4 \quad(\bmod 5) \\
& x \equiv 5 \quad(\bmod 6) \\
& x \equiv 0 \quad(\bmod 7) .
\end{aligned}
$$

Since the moduli are not pairwise coprime, we can't use the Chinese Remainder Theorem. However, we notice from the first and fourth congruences that x must end in a 9 , and from the last congruence, it must be a multiple of 7 . Since $49 \not \equiv 2(\bmod 3)$, we try the next number satisfying these properties, which is 119. It is easy to check that 119 satisfies every congruence.
(3.3\#14(b)) Use induction to show that if $a_{1}, a_{2}, \ldots, a_{n}$ are integers, and b is another integer such that $\left(a_{1}, b\right)=\left(a_{2}, b\right)=\cdots=\left(a_{n}, b\right)=1$, then $\left(a_{1} a_{2} \cdots a_{n}, b\right)=1$.

The base case is trivial. Suppose the statement is true for n. Now suppose that $\left(a_{1}, b\right)=$ $\left(a_{2}, b\right)=\cdots=\left(a_{n}, b\right)=\left(a_{n+1}, b\right)=1$. By the induction hypothesis, $\left(a_{1} a_{2} \cdots a_{n}, b\right)=1$, so there are integers s and t such that

$$
a_{1} a_{2} \cdots a_{n} s+b t=1
$$

Multiplying through by a_{n+1}, we have

$$
a_{1} a_{2} \cdots a_{n} a_{n+1} s+a_{n+1} b t=a_{n+1} .
$$

Also, since $\left(a_{n+1}, b\right)=1$, we have integers e and f such that $a_{n+1} e+b f=1$. Substituting for a_{n+1}, we have

$$
\left(a_{1} a_{2} \cdots a_{n} a_{n+1} s+a_{n+1} b t\right) e+b f=1
$$

Rewriting, we have

$$
\left(a_{1} a_{2} \cdots a_{n} a_{n+1}(s e)+b\left(a_{n+1} t e+f\right)=1\right.
$$

so $\left(a_{1} a_{2} \cdots a_{n} a_{n+1}, b\right)=1$. Therefore, the statement is true for all positive integers n.

