(3.5 # 44) Show that $\sqrt[3]{5}$ is irrational.

(a) Suppose $\sqrt[3]{5}$ is rational. Then we can write $\sqrt[3]{5} = a/b$ where (a, b) = 1 and $b \neq 0$. Then $5 = a^3/b^3$, so $5b^3 = a^3$. Now $5 \mid a^3$, so $5 \mid a$. Then we can write a = 5k for some integer k, so $5b^3 = 125k^3$, and hence $5 \mid b^3$, so $5 \mid b$. But this is a contradiction since (a, b) = 1. Therefore $\sqrt[3]{5}$ is irrational.

(b) Since $\sqrt[3]{5}$ is not an integer, and it is the root of the polynomial $x^3 - 5$, it is irrational, by Theorem 3.18.

(3.5 # 74) Show that if p is prime and $1 \le k < p$, then the binomial coefficient $\binom{p}{k}$ is divisible by p.

The binomial coefficient

$$\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{1 \cdot 2 \cdots p}{1 \cdot 2 \cdots k \cdot 1 \cdot 2 \cdots (p-k)}$$

Since k < p, all the factors in the denominator are less than p, so they do not cancel the p in the numerator. Therefore, p divides $\binom{p}{k}$.

(3.6 # 16) Show that if a is a positive integer and $a^m + 1$ is an odd prime, then $m = 2^n$ for some positive integer n.

Suppose that $a^m + 1$ is an odd prime. If $m = k\ell$ with $\ell > 1$ odd, then we can factor $a^m + 1 = (a^k + 1)(a^{k(\ell-1)} - a^{k(\ell-2)} + \dots - a^k + 1).$

Since k < m, $a^k + 1 < a^m + 1$, and since a > 0, $a^k + 1 > 1$, so this is a nontrivial factorization, and hence a contradiction. Therefore m must have no odd factors, so it must be of the form $m = 2^n$.

(3.6 # 18) Use the fact that every prime divisor of $F_4 = 2^{2^4} + 1$ is of the form $2^6k + 1 = 64k + 1$ to verify that F_4 is prime.

Any prime factor of F_4 must be of the form 64k + 1, and must be less than or equal to $[\sqrt{65, 537}] = 256 = 2^8$. Then 64 + 1 = 65 is not prime, $64 \cdot 2 + 1 = 129$ is not prime, and $64 \cdot 3 + 1 = 193 \nmid F_4$. The next possible factor $64 \cdot 4 + 1 = 2^8 + 1$ is too big, so F_4 is prime.

(4.1 # 12) Construct a table for addition modulo 6.

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1		3	4

(4.1 # 14) Construct a table for multiplication modulo 6.

\times	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	$ \begin{array}{c} 4 \\ 2 \\ $	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

(4.1 # 20) Show that if n is an odd positive integer or if n is a positive integer divisible by 4, then

$$1^3 + 2^3 + \dots + (n-1)^3 \equiv 0 \pmod{n}.$$

Is this statement true if n is even but not divisible by 4?

By a problem from the first HW,

$$1^{3} + 2^{3} + \dots + (n-1)^{3} = \left[\frac{n(n-1)}{2}\right]^{2} = \frac{n^{2}(n-1)^{2}}{4}.$$

If $4 \mid n$, then n = 4k for some integer k, so

$$\frac{n^2(n-1)^2}{4} = kn(n-1)^2 \equiv 0 \pmod{n}.$$

If n is odd then n-1 is even, so n-1=2m for some integer m. Then

$$\frac{n^2(n-1)^2}{4} = n^2 m^2 \equiv 0 \pmod{n}.$$

If n is even but not divisible by 4, then $n = 2\ell$ for some odd integer ℓ , and

$$\frac{n^2(n-1)^2}{4} = \ell^2(n-1)^2 = \ell^2 n^2 - 2\ell^2 n + \ell^2 \equiv \ell^2 \pmod{n},$$

and since ℓ is odd and n is even, $n \nmid \ell^2$, so $\ell^2 \not\equiv 0 \pmod{n}$.

(4.1 # 22) Show by induction that if n is a positive integer, then $4^n \equiv 1 + 3n \pmod{9}$.

For the base case, $4 \equiv 1+3 \pmod{9}$. For the induction hypothesis, assume that $4^n \equiv 1+3n \pmod{9}$ for some positive integer n. Then

$$4^{n+1} = 4 \cdot 4^n \equiv 4(1+3n) \equiv 4 + 12n \equiv 4 + 3n \equiv 1 + 3(n+1) \pmod{9}$$

Therefore $4^n \equiv 1 + 3n \pmod{9}$ for all positive integers n.

(4.1 # 26) Show that if p is prime, then the only solutions of the congruence $x^2 \equiv x \pmod{p}$ are those integers x such that $x \equiv 0$ or 1 (mod p).

If $x^2 \equiv x \pmod{p}$, then $x(x-1) \equiv 0 \pmod{p}$. Thus $p \mid x(x-1)$, so $p \mid x$ or $p \mid x-1$. Hence the only solutions are $x \equiv 0 \pmod{p}$ or $x \equiv 1 \pmod{p}$.

(4.2 # 2) Find all solutions to the following linear congruences.

(b) $6x \equiv 3 \pmod{9}$.

Since (6,9) = 3, there are 3 incongruent solutions. It's easy to see that $x \equiv 2 \pmod{9}$ is one solution. Then since 9/3 = 3, the other solutions are $x \equiv 2 + 3 \equiv 5 \pmod{9}$ and $x \equiv 2 + 6 \equiv 8 \pmod{9}$.

(c) $17x \equiv 14 \pmod{21}$

Since (17, 21) = 1, there is a unique solution modulo 21. Using the Euclidean Algorithm we find that 17(5)-21(4) = 1, so multiplying by 14, we have 17(70)-21(56) = 14. Therefore the unique solution is $x \equiv 70 \equiv 7 \pmod{21}$.

(d) $15x \equiv 9 \pmod{25}$.

Since (15, 25) = 5 and $5 \nmid 9$, there are no solutions.

(4.2 # 10) Determine which integers a, where $1 \le a \le 14$, have an inverse modulo 14, and find the inverse of each of these integers modulo 14.

The numbers a with an inverse modulo 14 are those for which (a, 14) = 1: 1, 3, 5, 9, 11, and 13. The inverse of each of these integers modulo 14 is also in that list, since if $ab \equiv 1 \pmod{m}$, then both a and b have an inverse modulo m. So we see that $\overline{1} = 1$, $\overline{3} = 5$, $\overline{5} = 3$, $\overline{9} = 11$, $\overline{11} = 9$, and $\overline{13} = 13$.

(4.2 # 18) Show that if p is an odd prime and a is a positive integer not divisible by p, then the congruence $x^2 \equiv a \pmod{p}$ has either no solution or exactly two incongruenct solutions.

If the congruence has no solutions, we are done, so suppose that it has at least one solution c. Then $c^2 \equiv a \pmod{p}$, so also $(-c)^2 \equiv a \pmod{p}$. If $c \equiv -c \pmod{p}$, then $2c \equiv 0 \pmod{p}$. Since p is odd, this implies that $p \mid c$. But then $a \equiv c^2 \equiv 0 \pmod{p}$. This is a contradiction since $p \nmid a$. Therefore c and -c are incongruent solutions. Now suppose b is another solution. Then $b^2 \equiv c^2 \pmod{p}$, so $(b+c)(b-c) \equiv b^2 - c^2 \equiv 0 \pmod{p}$. Then either $p \mid (b+c)$ or $p \mid (b-c)$, so $b \equiv \pm c \pmod{p}$. Therefore there are exactly two inconruent solutions modulo p.

(4.3 # 12) If eggs are removed from a baseket 2, 3, 4, 5, and 6 at a time, there remain, respectively, 1, 2, 3, 4, and 5 eggs. But if the eggs are removed 7 at a time, no eggs remain. What is the least number of eggs that could have been in the basket?

We need to find the least positive integer solution to the system of congruences

 $x \equiv 1 \pmod{2}$ $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{4}$ $x \equiv 4 \pmod{5}$ $x \equiv 5 \pmod{6}$ $x \equiv 0 \pmod{7}.$

Since the moduli are not pairwise coprime, we can't use the Chinese Remainder Theorem. However, we notice from the first and fourth congruences that x must end in a 9, and from the last congruence, it must be a multiple of 7. Since $49 \neq 2 \pmod{3}$, we try the next number satisfying these properties, which is 119. It is easy to check that 119 satisfies every congruence.

(3.3 # 14(b)) Use induction to show that if a_1, a_2, \ldots, a_n are integers, and b is another integer such that $(a_1, b) = (a_2, b) = \cdots = (a_n, b) = 1$, then $(a_1a_2 \cdots a_n, b) = 1$.

The base case is trivial. Suppose the statement is true for n. Now suppose that $(a_1, b) = (a_2, b) = \cdots = (a_n, b) = (a_{n+1}, b) = 1$. By the induction hypothesis, $(a_1a_2 \cdots a_n, b) = 1$, so there are integers s and t such that

$$a_1 a_2 \cdots a_n s + bt = 1.$$

Multiplying through by a_{n+1} , we have

$$a_1 a_2 \cdots a_n a_{n+1} s + a_{n+1} bt = a_{n+1}.$$

Also, since $(a_{n+1}, b) = 1$, we have integers e and f such that $a_{n+1}e + bf = 1$. Substituting for a_{n+1} , we have

$$(a_1a_2\cdots a_na_{n+1}s + a_{n+1}bt)e + bf = 1.$$

Rewriting, we have

$$(a_1 a_2 \cdots a_n a_{n+1}(se) + b(a_{n+1}te + f) = 1,$$

so $(a_1a_2\cdots a_na_{n+1}, b) = 1$. Therefore, the statement is true for all positive integers n.