
Math 25: Solutions to Homework #2

(2.3 # 6) Suppose that m is a positive real nubmer. Show that
∑n

j=1 jm is O(nm+1).

We see that
n∑

j=1

jm ≤
n∑

j=1

nm = n · nm = nm+1,

so
∑n

j=1 jm ≤
∑n

j=1 nm is O(nm+1).

(2.3 # 8) Show that if f1 is O(g1) and f2 is O(g2), and c1 and c2 are constants, then c1f1+c2f2

is O(g1 + g2).

Since f1 is O(g1) and f2 is O(g2), there are positive constants k1 and k2 such that f1 ≤ k1g1

and f2 ≤ k2g2. Let K = max{|c1k1|, |c2k2|}. Then

c1f2 + c2f2 ≤ c1k1g1 + c2k2g2 ≤ K(g1 + g2),

so c1f1 + c2f2 is O(g1 + g2).

(3.2 # 4) Find the smallest four sets of prime triplets of the form p, p + 4, p + 6.

(5, 7, 11), (11, 13, 17), (17, 19, 23), and (41, 43, 47).

(3.2 # 12) Show that every integer greater than 11 is the sum of two composite integers.

Let n ≥ 12. If n is even, there is an integer k ≥ 6 such that n = 2k. Then n = 2(k−2)+4.
Since k − 2 > 1, the two numbers in the sum are both composte. If n is odd, there is an
integer m ≥ 6 such that n = 2m+1. Then n = 2(m−4)+9. Since m−4 ≥ 2, both numbers
in the sum are composite.



(3.2 # 14(a)) Find G(n) for all even integers n with 4 ≤ n ≤ 30.

n G(n) Sums
4 1 2+2
6 1 3+3
8 1 3+5
10 2 5+5, 3+7
12 1 5+7
14 2 7+7, 3+11
16 2 3+13, 5+11
18 2 7+11, 5+13
20 2 7+13, 3+17
22 3 11+11, 5+17, 3+19
24 3 11+13, 7+17, 5+19
26 3 13+13, 7+19, 3+23
28 2 11+17, 5+23
30 3 13+17, 11+19, 7+23

(3.3 # 8) Show that if a and b are integers with (a, b) = 1, then (a + b, a − b) = 1 or 2.

Suppose that d is a common divsor of a + b and a − b. Then d|(a + b + a − b) = 2a, and
d|((a + b) − (a − b)) = 2b, so d|(2a, 2b). Since (a, b) = 1, (2a, 2b) = 2, so d|2. Then d = 1 or
d = 2. Therefore, the greatest common divisor of of a + b and a− b must also be either 1 or
2.

(3.3 # 12) Show that if a, b, and c are integers such that (a, b) = 1 and c | (a + b), then
(c, a) = (c, b) = 1.

Since (a, b) = 1, we can write ma+nb = 1 for some integers m and n. Then since c|(a+b),
there is an integer d such that cd = a + b. Then b = cd − a, so substituting in the linear
combination, we have ma + n(cd − a) = 1, so a(m − n) + c(nd) = 1, and hence (a, c) = 1.
Making the substitution a = cd − b, we have m(cd − b) + nb = 1, so b(n − m) + c(md) = 1,
therefore (b, c) = 1 as well.

(3.3 # 16) Find four integers that are mutually relatively prime, but any two of which are
not relatively prime.

There are many possible answers. One is 105 = 3 · 5 · 7, 70 = 2 · 5 · 7, 42 = 2 · 3 · 7,
30 = 2 · 3 · 5.

(3.4 # 2) Use the Euclidean algorithm to find each of the following GCDs.



(b) Find (105, 300).

300 = 2 · 105 + 90

105 = 1 · 90 + 15

90 = 6 · 15.

So (105, 300) = 15.

(c) Find (981, 1234).

1234 = 1 · 981 + 253

981 = 3 · 253 + 222

253 = 1 · 222 + 31

222 = 7 · 31 + 5

31 = 6 · 5 + 1

5 = 5 · 1.
So (981, 1234) = 1.

(3.4 # 4) Express the GCDs above as a linear combination of the integers.

Working backwards from the Euclidean Algorithm in the previous problem:

(b) 15 = 105 − 90 = 105 − (300 − 2 · 105) = 3 · 105 − 1 · 300.

(c)

1 = 31 − 6 · 5
= 31 − 6(222 − 7 · 31) = 43 · 31 − 6 · 222

= 43(253 − 222) − 6 · 222 = 43 · 253 − 49 · 222

= 43 · 253 − 49(981 − 3 · 253) = 190 · 253 − 49 · 981

= 190(1234 − 981) − 49 · 981 = 190 · 1234 − 239 · 981.

(3.5 # 14) Let n be a positive integer. Show that the power of the prime p occurring in the
prime-power factorization of n! is

[n/p] + [n/p2] + [n/p3] + · · · .

Since n is the product of the integers 1, 2, . . . , n, the prime factorization of n! is the product
of the prime factorizations of the integers 1, 2, . . . , n. To count the factors of a given prime
p, we note that each multiple of p less than or equal to n contributes one p, and there are
[n/p] such numbers. Now every multiple of p2 contributes 2 factors of p, but we have already
counted one of the p’s for each of these numbers, since they are also multiples of p. So
we need only count again the number of multiples of p2 up to n, of which there are [n/p2].
Continuing in this manner, we see that there are

[n/p] + [n/p2] + [n/p3] + · · ·



factors of p in n!. Note that although this looks like an infinite sum, it only has finitely
many nonzero terms, since for a fixed n, we will eventually come to a power pk > n. Then
[n/pj] = 0 for all j ≥ k.

(3.5 # 16) How many zeros are there at the end of 1000!?

The number of zeros at the end of any decimal expansion of a number corresponds exactly
to the number of factors of 10 that divide the number. Since 10 = 2 · 5, and there are more
multiples of 2 than of 5 among the integers 1, 2, . . . , n, we can simply count the number of
factors of 5 in 1000!. Using the formula from the previous problem, we have

[1000/5] + [1000/25] + [1000/125] + [1000/625] = 200 + 40 + 8 + 1 = 249.

(3.5 # 32(d)) Find the GCD and LCM of 4110147431031001 and 4111434783111.

The GCD is 4111, and the LCM is 4110143474743831111031001.

(3.5 # 54) Let n be a positive integer. How many pairs of positive integers satisfy [a, b] = n?

Let n = pc1
1 pc2

2 · pct
t . If n = [a, b], then we can write a = pa1

1 pa2
2 · pat

t and b = pb1
1 pb2

2 · pbt
t

where for 1 ≤ i ≤ t, ci = max{ai, bi}. To count the possible pairs a, b, we first note that
there are 2t ways to choose the primes pi for which pci

i |a. Then for each prime pi, there are
ci + 1 choices for the power of pi dividing whichever of a or b does not receive the maximum
power of pi (since then the power can be any number 0, 1, 2, . . . , ci). So we have

2t

t∏
i=1

(ci + 1)

pairs a and b. But we have actually counted each pair twice, since we have counted (a, b) as
distinct from (b, a). Since these are really the same pair of two numbers, and the order does
not matter when calculating LCMs, we should divide by 2. So there are

2t−1

t∏
i=1

(ci + 1)

pairs a and b such that n = [a, b].


