
Math 25: Solutions to Homework #1

(1.3 # 8) Use mathematical induction to prove that
n∑

j=1

j3 =
(

n(n+1)
2

)2

for every integer n.

We use the first principle of mathematical induction. For the base case, 13 = 1 =
(

1·2
2

)2
.

For the induction hypothesis, assume that
n∑

j=1

j3 =
(

n(n+1)
2

)2

for some positive integer n.

Then

n+1∑
j=1

j3 = (n + 1)3 +
n∑

j=1

j3 = (n + 1)3 +

(
n(n + 1)

2

)2

=
4(n + 1)3 + n2(n + 1)2

4

=
(n + 1)2(n2 + 4n + 4)

4
=

(
(n + 1)(n + 2)

2

)2

.

Therefore,
n∑

j=1

j3 =
(

n(n+1)
2

)2

for every integer n.

(1.3 # 14) Show that any amount of postage that is an integer number of cents greater than
53 cents can be formed using just 7-cent and 10-cent stamps.

We use the second principle of mathematical induction. First note that n cents can be
formed using 7-cent and 10-cent stamps if there are integers a and b such that 7a + 10b = n.
For the base cases, we see that 54 = 2 ·7+4 ·10, 55 = 5 ·7+2 ·10, 56 = 8 ·7, 57 = 1 ·7+5 ·10,
58 = 4 · 7 + 3 · 10, and 59 = 7 · 7 + 1 · 10. For the induction hypothesis, assume that
there is an integer solution to the equation 53 + k = 7a + 10b for k = 1, 2, . . . , n. Then
53 + n + 1 = 53 + (n − 6) + 7, and by the induction hypothesis, there are integers a and b
such that 53 + (n− 6) = 7a + 10b, so 53 + n + 1 = 7(a + 1) + 10b. Therefore any number of
cents greater than 53 can be formed using 7 and 10 cent stamps.

(1.3 # 30) Show that 2n > n2 whenever n is an integer greater than 4.

We proceed by induction on n. For the base case, 25 = 32 > 52. For the induction
hypothesis, assume that 2n > n2 some n > 4. Then 2n+1 = 2 · 2n > 2n2 by the induction
hypothesis. We need to show that 2n2 > (n + 1)2 = n2 + 2n + 1, so it is sufficient to show
that n2 > 2n + 1. Consider the polynomial x2 − 2x− 1. By the quadratic formula, the two
roots of this polynomial are 1 ±

√
2. Since the function f(x) = x2 − 2x − 1 is positive for

x > 1 +
√

2, and n > 4 > 1 +
√

2, we see that n2 > 2n + 1. Therefore 2n > n2 for all n > 4.

(1.4 # 6) Prove that fn−2 + fn+2 = 3fn whenever n is an integer with n ≥ 2.

We use the second principle of mathematical induction. For the base case, we see that
f0 + f4 = 0 + 3 = 3f2. For the induction hypothesis, assume that fk−2 + fk+2 = 3fk for



k = 2, 3, . . . , n. Then by the definition of the Fibonacci sequence,

fn−1+fn+3 = fn−2+fn−3+fn+2+fn+1 = (fn−2+fn+2)+(fn−3+fn+1) = 3fn+3fn−1 = 3fn+1.

Therefore fn−2 + fn+2 = 3fn whenever n is an integer with n ≥ 2.

(1.5 # 12) Show that the sum of two even or of two odd integers is even, whereas the sum
of an odd and an even integer is odd.

Let a and b be even integers. Then a = 2k and b = 2` for some integers k and `. So
a + b = 2k + 2` = 2(k + `), and hence a + b is even. Now suppose that a and b are both
odd. Then a = 2k + 1 and b = 2` + 1 for integers k and `. Then a + b = 2k + 1 + 2` + 1 =
2(k+`)+2 = 2(k+`+1), so a+b is even. Finally, suppose that a is even and b is odd. Then
we write a = 2k and b = 2`+1 for integers k and `. Then a+ b = 2k +2`+1 = 2(k + `)+1,
and hence a + b is odd.

(1.5 # 14) Show that if a and b are odd positive integers and b - a, then there are integers s
and t such that a = bs + t, where t is odd and |t| < b.

By the Division Algorithm, since b - a, there are unique integers q and r with 0 < r < b
such that a = bq + r. If q is even, then bq is even, so r = a− bq is odd, and clearly |r| < b.
If q is odd, then a = b(q + 1) + (r − b). Then q + 1 is even, so b(q + 1) is even, and hence
r − b = a − b(q + 1) is odd. Since 0 < r < b, we see that −b < r − b < 0, so |r − b| < b.
Therefore in each case, we have written a = bs + t, where t is odd and |t| < b.

(3.1 # 6) Show that no integer of the form n3 + 1 is a prime, other than 2 = 13 + 1.

Let n be an integer. Then n3 + 1 = (n + 1)(n2 − n + 1), so n3 + 1 is composite unless
either n + 1 = 1 or n + 1 = n3 + 1. If n + 1 = 1, then n = 0, so n3 + 1 = 1, which is not
prime. If n + 1 = n3 + 1, then n = n3, and hence n = 1, so n3 + 1 = 2. This is the only case
in which n3 + 1 is prime.

(3.1 # 8) Show that the integer Qn = n! + 1, where n is a positive integer, has a prime
divisor greater than n. Conclude that there are infinitely many primes.

Fix an integer n ≥ 1, and suppose that all primes p satisfy p ≤ n. Let Qn = n! + 1. Then
Qn > 1, so it has some prime divisor q ≤ n, and hence q|n!. But then q|(Qn−n!) = 1, which
is a contradiction. So there must be a prime larger than n. Since n was arbitrary, there are
infinitely many primes.

(3.1 # 24) Find all lucky numbers less than 100.

The lucky numbers are 1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75,
79, 87, 93, 99.


