(1.3 \# 8) Use mathematical induction to prove that $\sum_{j=1}^{n} j^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for every integer n.

We use the first principle of mathematical induction. For the base case, $1^{3}=1=\left(\frac{1 \cdot 2}{2}\right)^{2}$. For the induction hypothesis, assume that $\sum_{j=1}^{n} j^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for some positive integer n. Then

$$
\begin{aligned}
\sum_{j=1}^{n+1} j^{3}=(n+1)^{3}+\sum_{j=1}^{n} j^{3}=(n+1)^{3}+ & \left(\frac{n(n+1)}{2}\right)^{2}=\frac{4(n+1)^{3}+n^{2}(n+1)^{2}}{4} \\
& =\frac{(n+1)^{2}\left(n^{2}+4 n+4\right)}{4}=\left(\frac{(n+1)(n+2)}{2}\right)^{2}
\end{aligned}
$$

Therefore, $\sum_{j=1}^{n} j^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for every integer n.
(1.3 \# 14) Show that any amount of postage that is an integer number of cents greater than 53 cents can be formed using just 7 -cent and 10-cent stamps.

We use the second principle of mathematical induction. First note that n cents can be formed using 7 -cent and 10 -cent stamps if there are integers a and b such that $7 a+10 b=n$. For the base cases, we see that $54=2 \cdot 7+4 \cdot 10,55=5 \cdot 7+2 \cdot 10,56=8 \cdot 7,57=1 \cdot 7+5 \cdot 10$, $58=4 \cdot 7+3 \cdot 10$, and $59=7 \cdot 7+1 \cdot 10$. For the induction hypothesis, assume that there is an integer solution to the equation $53+k=7 a+10 b$ for $k=1,2, \ldots, n$. Then $53+n+1=53+(n-6)+7$, and by the induction hypothesis, there are integers a and b such that $53+(n-6)=7 a+10 b$, so $53+n+1=7(a+1)+10 b$. Therefore any number of cents greater than 53 can be formed using 7 and 10 cent stamps.
(1.3 \# 30) Show that $2^{n}>n^{2}$ whenever n is an integer greater than 4 .

We proceed by induction on n. For the base case, $2^{5}=32>5^{2}$. For the induction hypothesis, assume that $2^{n}>n^{2}$ some $n>4$. Then $2^{n+1}=2 \cdot 2^{n}>2 n^{2}$ by the induction hypothesis. We need to show that $2 n^{2}>(n+1)^{2}=n^{2}+2 n+1$, so it is sufficient to show that $n^{2}>2 n+1$. Consider the polynomial $x^{2}-2 x-1$. By the quadratic formula, the two roots of this polynomial are $1 \pm \sqrt{2}$. Since the function $f(x)=x^{2}-2 x-1$ is positive for $x>1+\sqrt{2}$, and $n>4>1+\sqrt{2}$, we see that $n^{2}>2 n+1$. Therefore $2^{n}>n^{2}$ for all $n>4$.
(1.4\#6) Prove that $f_{n-2}+f_{n+2}=3 f_{n}$ whenever n is an integer with $n \geq 2$.

We use the second principle of mathematical induction. For the base case, we see that $f_{0}+f_{4}=0+3=3 f_{2}$. For the induction hypothesis, assume that $f_{k-2}+f_{k+2}=3 f_{k}$ for
$k=2,3, \ldots, n$. Then by the definition of the Fibonacci sequence,
$f_{n-1}+f_{n+3}=f_{n-2}+f_{n-3}+f_{n+2}+f_{n+1}=\left(f_{n-2}+f_{n+2}\right)+\left(f_{n-3}+f_{n+1}\right)=3 f_{n}+3 f_{n-1}=3 f_{n+1}$.
Therefore $f_{n-2}+f_{n+2}=3 f_{n}$ whenever n is an integer with $n \geq 2$.
(1.5 \# 12) Show that the sum of two even or of two odd integers is even, whereas the sum of an odd and an even integer is odd.

Let a and b be even integers. Then $a=2 k$ and $b=2 \ell$ for some integers k and ℓ. So $a+b=2 k+2 \ell=2(k+\ell)$, and hence $a+b$ is even. Now suppose that a and b are both odd. Then $a=2 k+1$ and $b=2 \ell+1$ for integers k and ℓ. Then $a+b=2 k+1+2 \ell+1=$ $2(k+\ell)+2=2(k+\ell+1)$, so $a+b$ is even. Finally, suppose that a is even and b is odd. Then we write $a=2 k$ and $b=2 \ell+1$ for integers k and ℓ. Then $a+b=2 k+2 \ell+1=2(k+\ell)+1$, and hence $a+b$ is odd.
(1.5 \# 14) Show that if a and b are odd positive integers and $b \nmid a$, then there are integers s and t such that $a=b s+t$, where t is odd and $|t|<b$.

By the Division Algorithm, since $b \nmid a$, there are unique integers q and r with $0<r<b$ such that $a=b q+r$. If q is even, then $b q$ is even, so $r=a-b q$ is odd, and clearly $|r|<b$. If q is odd, then $a=b(q+1)+(r-b)$. Then $q+1$ is even, so $b(q+1)$ is even, and hence $r-b=a-b(q+1)$ is odd. Since $0<r<b$, we see that $-b<r-b<0$, so $|r-b|<b$. Therefore in each case, we have written $a=b s+t$, where t is odd and $|t|<b$.
(3.1\# 6) Show that no integer of the form $n^{3}+1$ is a prime, other than $2=1^{3}+1$.

Let n be an integer. Then $n^{3}+1=(n+1)\left(n^{2}-n+1\right)$, so $n^{3}+1$ is composite unless either $n+1=1$ or $n+1=n^{3}+1$. If $n+1=1$, then $n=0$, so $n^{3}+1=1$, which is not prime. If $n+1=n^{3}+1$, then $n=n^{3}$, and hence $n=1$, so $n^{3}+1=2$. This is the only case in which $n^{3}+1$ is prime.
(3.1 \# 8) Show that the integer $Q_{n}=n!+1$, where n is a positive integer, has a prime divisor greater than n. Conclude that there are infinitely many primes.

Fix an integer $n \geq 1$, and suppose that all primes p satisfy $p \leq n$. Let $Q_{n}=n!+1$. Then $Q_{n}>1$, so it has some prime divisor $q \leq n$, and hence $q \mid n!$. But then $q \mid\left(Q_{n}-n!\right)=1$, which is a contradiction. So there must be a prime larger than n. Since n was arbitrary, there are infinitely many primes.
(3.1 \# 24) Find all lucky numbers less than 100.

The lucky numbers are $1,3,7,9,13,15,21,25,31,33,37,43,49,51,63,67,69,73,75$, 79, 87, 93, 99.

