Math 24, Winter 2020, Pset 5

This problem set is due on Friday March 6.

1. Prove that if $T: V \rightarrow V$ is a linear transformation and λ is an eigenvalue of T, then λ^{2} is an eigenvalue of T^{2}.
2. Prove that if T is invertible, and λ is an eigenvalue of T, then λ^{-1} is an eigenvalue of T^{-1}.
3. Prove that a linear transformation $T: V \rightarrow V$ is invertible if and only if $\lambda=0$ is not an eigenvalue of T.
4. Let $V=P_{2}(\mathbb{R})$. For each of the following linear transformations $T: V \rightarrow V$, test whether T is diagonalizable, and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
(a) T is defined by $T(f)=f+f^{\prime}$.
(b) T is defined by $T\left(a x^{2}+b x+c\right)=c x^{2}+b x+a$.
5. Let $L_{A}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ be the linear transformation associated to the matrix

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Here \mathbb{C}^{2} is a vector space over the field $F=\mathbb{C}$.
(a) Determine the eigenvalues of A.
(b) For each eigenvalue, find the eigenspace.
(c) Find a basis for \mathbb{C}^{2} consisting of eigenvectors of A.
(d) Determine an invertible matrix Q and a diagonal matrix D such that $A=Q^{-1} A Q$.
6. On the midterm exam, you calculated the 3×3 matrix $[U T]_{\beta}$ of the composition of the spatial rotations $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ (about the z-axis by an angle of $\pi / 3$) and $U: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ (about the x-axis by angle $\pi / 3)$. In the standard basis $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$:

$$
[U T]_{\beta}=[U]_{\beta}[T]_{\beta}=\left(\begin{array}{ccc}
c & -s & 0 \\
c s & c^{2} & -s \\
s^{2} & c s & c
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{4} & \frac{1}{4} & -\frac{\sqrt{3}}{2} \\
\frac{3}{4} & \frac{\sqrt{3}}{4} & \frac{1}{2}
\end{array}\right)
$$

with $c=\cos \pi / 3=\frac{1}{2}, s=\sin \pi / 3=\frac{\sqrt{3}}{2}$.
In general, the composition of two spatial rotations is again a spatial rotation. In this problem you will calculate the axis and angle of rotation of $U T$.
(a) Find the characteristic polynomial of $U T$.
(b) Because $U T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a spatial rotation, $\lambda=1$ must be one of its eigenvalues. Find the eigenspace for eigenvalue $\lambda=1$.
(c) Factor the characteristic polynomial of $U T$.
(d) Is $U T$ diagonalizable? Explain your answer.
(e) Find the complex roots of the characteristic polynomial.
(f) What is the axis of rotation of $U T$?
(g) What is the angle of rotation of $U T$?

