Math 24, Winter 2020, Pset 5

This problem set is due on Friday March 6.

- 1. Prove that if $T: V \to V$ is a linear transformation and λ is an eigenvalue of T, then λ^2 is an eigenvalue of T^2 .
- 2. Prove that if T is invertible, and λ is an eigenvalue of T, then λ^{-1} is an eigenvalue of T^{-1} .
- 3. Prove that a linear transformation $T: V \to V$ is invertible if and only if $\lambda = 0$ is not an eigenvalue of T.
- 4. Let $V = P_2(\mathbb{R})$. For each of the following linear transformations $T: V \to V$, test whether T is diagonalizable, and if T is diagonalizable, find a basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
 - (a) T is defined by T(f) = f + f'.
 - (b) T is defined by $T(ax^2 + bx + c) = cx^2 + bx + a$.
- 5. Let $L_A: \mathbb{C}^2 \to \mathbb{C}^2$ be the linear transformation associated to the matrix

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Here \mathbb{C}^2 is a vector space over the field $F = \mathbb{C}$.

- (a) Determine the eigenvalues of A.
- (b) For each eigenvalue, find the eigenspace.
- (c) Find a basis for \mathbb{C}^2 consisting of eigenvectors of A.
- (d) Determine an invertible matrix Q and a diagonal matrix D such that $A = Q^{-1}AQ$.
- 6. On the midterm exam, you calculated the 3×3 matrix $[UT]_{\beta}$ of the composition of the spatial rotations $T : \mathbb{R}^3 \to \mathbb{R}^3$ (about the z-axis by an angle of $\pi/3$) and $U : \mathbb{R}^3 \to \mathbb{R}^3$ (about the *x*-axis by angle $\pi/3$). In the standard basis $\beta = \{e_1, e_2, e_3\}$:

$$[UT]_{\beta} = [U]_{\beta}[T]_{\beta} = \begin{pmatrix} c & -s & 0\\ cs & c^2 & -s\\ s^2 & cs & c \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{4} & \frac{1}{4} & -\frac{\sqrt{3}}{2}\\ \frac{3}{4} & \frac{\sqrt{3}}{4} & \frac{1}{2} \end{pmatrix}$$

with $c = \cos \pi/3 = \frac{1}{2}$, $s = \sin \pi/3 = \frac{\sqrt{3}}{2}$.

In general, the composition of two spatial rotations is again a spatial rotation. In this problem you will calculate the axis and angle of rotation of UT.

- (a) Find the characteristic polynomial of UT.
- (b) Because $UT : \mathbb{R}^3 \to \mathbb{R}^3$ is a spatial rotation, $\lambda = 1$ must be one of its eigenvalues. Find the eigenspace for eigenvalue $\lambda = 1$.

- (c) Factor the characteristic polynomial of UT.
- (d) Is UT diagonalizable? Explain your answer.
- (e) Find the complex roots of the characteristic polynomial.
- (f) What is the axis of rotation of UT?
- (g) What is the angle of rotation of UT?