Math 24, Winter 2020, Pset 4

This problem set is due on Friday February 28.

1. Let V be a finite dimensional vector space over a field F, and let $\beta = \{v_1, v_2, \ldots, v_n\}$ be an ordered basis of V. Denote by $\phi: V \to F^n$ the isomorphism

$$\phi(x) := [x]_{\beta}$$

(a) If $K \subset V$ is a subspace of V, let $\phi(K) \subset F^n$ be the set

$$\phi(K) = \{ y \in F^n \mid \text{there exists } x \in K \text{ such that } y = \phi(x) \}$$

Prove that $\phi(K)$ is a subspace of F^n .

- (b) Prove that K is isomorphic to $\phi(K)$.
- (c) Prove that $\dim K = \dim \phi(K)$.
- (d) Let $T: V \to V$ be a linear map, with $n \times n$ matrix $A = [T]_{\beta}$. Prove that rank $T = \operatorname{rank} A$.
- 2. (a) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(a,b) = (2a+b,a-3b)$$

What is the matrix $[T]_{\beta}$ if $\beta = \{e_1, e_2\}$ is the standard ordered basis of \mathbb{R}^2 .

(b) Let γ be the ordered basis

$$\gamma = \{(1,1), (1,2)\}$$

What is the change of coordinate matrix Q that changes γ coordinates into β coordinates?

- (c) Find the inverse matrix Q^{-1} .
- (d) What is the change of coordinate matrix that changes standard β coordinates into γ coordinates?
- (e) Find $[T]_{\gamma}$. (Use Theorem 2.23)
- 3. Do exercise 2(b) and 2(f) on page 165 (section 3.2).
- 4. Do exercise 5(b) and 5(d) on page 165 (section 3.2).
- 5. Do exercise 2(b) and 2(d) on page 194 (section 3.4).
- 6. Do exercise 14, 16, 18 on page 222 (section 4.2).