Math 24, Winter 2020, Pset 3

This problem set is due at the start of lecture on Wednesday January 29.

1. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, and $T(1,0)=(0,1), T(1,1)=(2,3)$.
(a) Express $(1,2)$ as a linear combination of $(1,0)$ and $(1,1)$.
(b) What is $T(1,2)$?
2. Let V, W be finite dimensional vector spaces over the same field F, and $T: V \rightarrow W$ a linear transformation. Prove that if the dimension of W is greater than the dimension of V, then T cannot be onto.
3. Let $T: V \rightarrow W$ be a linear transformation that is one-to-one. Prove that if $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a linearly independent set in V, then $\left\{T\left(u_{1}\right), T\left(u_{2}\right), \ldots, T\left(u_{n}\right)\right\}$ is linearly independent in W.
4. Let $A=\left[T_{\theta}\right]_{\beta}$ be the matrix of counterclockwise rotation $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by angle θ, using the standard basis $\beta=\left\{e_{1}, e_{2}\right\}$.
(a) Calculate A^{3}.
(b) Which formulas can you derive for $\cos (3 \theta)$ and $\sin (3 \theta)$ from the components of the matrix A^{3} ? Explain your answer.
(c) If $\theta=2 \pi / 3$, what is the matrix $B=\left[T_{\theta}\right]_{\gamma}$ for the basis $\{(\sqrt{3}, 1),(-\sqrt{3}, 1)\}$ of \mathbb{R}^{2} ?
(d) Calculate the matrix B^{3} using matrix multiplication, and interpret the result geometrically.

5 . Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be rotation about the axis spanned by $(1,1,1)$ by an angle of $2 \pi / 3$. The direction of the rotation is determined by the right-hand rule. Find the matrix $[T]_{\beta}$ for the standard basis $\beta=\left\{e_{1}, e_{2}, e_{3}\right\}$.
6. Let $P_{3}(\mathbb{R})$ be the vector space over \mathbb{R} of polynomials of degree at most 3. Consider the linear transformation

$$
D: P_{3}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R}) \quad D(f)=f^{\prime}
$$

Let $\gamma=\left\{f_{0}, f_{1}, f_{2}, f_{3}\right\}$ be the basis for $P_{3}(\mathbb{R})$ with $f_{k}(x)=\frac{1}{k!} x^{k}$.
(a) Find the matrix $C=[D]_{\gamma}$.
(b) Calculate C^{4}. What does the result say about derivatives?

