Math 24, Winter 2020, Pset 3

This problem set is due at the start of lecture on Wednesday January 29.

- 1. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, and T(1,0) = (0,1), T(1,1) = (2,3).
 - (a) Express (1, 2) as a linear combination of (1, 0) and (1, 1).
 - (b) What is T(1,2)?
- 2. Let V, W be finite dimensional vector spaces over the same field F, and $T: V \to W$ a linear transformation. Prove that if the dimension of W is greater than the dimension of V, then T cannot be onto.
- 3. Let $T: V \to W$ be a linear transformation that is one-to-one. Prove that if $\{u_1, u_2, \ldots, u_n\}$ is a linearly independent set in V, then $\{T(u_1), T(u_2), \ldots, T(u_n)\}$ is linearly independent in W.
- 4. Let $A = [T_{\theta}]_{\beta}$ be the matrix of counterclockwise rotation $T_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ by angle θ , using the standard basis $\beta = \{e_1, e_2\}$.
 - (a) Calculate A^3 .
 - (b) Which formulas can you derive for $\cos(3\theta)$ and $\sin(3\theta)$ from the components of the matrix A^3 ? Explain your answer.
 - (c) If $\theta = 2\pi/3$, what is the matrix $B = [T_{\theta}]_{\gamma}$ for the basis $\{(\sqrt{3}, 1), (-\sqrt{3}, 1)\}$ of \mathbb{R}^2 ?
 - (d) Calculate the matrix B^3 using matrix multiplication, and interpret the result geometrically.
- 5. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be rotation about the axis spanned by (1, 1, 1) by an angle of $2\pi/3$. The direction of the rotation is determined by the right-hand rule. Find the matrix $[T]_{\beta}$ for the standard basis $\beta = \{e_1, e_2, e_3\}$.
- 6. Let $P_3(\mathbb{R})$ be the vector space over \mathbb{R} of polynomials of degree at most 3. Consider the linear transformation

 $D: P_3(\mathbb{R}) \to P_3(\mathbb{R}) \qquad D(f) = f'$

Let $\gamma = \{f_0, f_1, f_2, f_3\}$ be the basis for $P_3(\mathbb{R})$ with $f_k(x) = \frac{1}{k!}x^k$.

- (a) Find the matrix $C = [D]_{\gamma}$.
- (b) Calculate C^4 . What does the result say about derivatives?