Math 24, Winter 2020, Pset 2

This problem set is due at the start of lecture on Wednesday January 22.

1. In each case below, determine whether $v \in \operatorname{span}(S)$.
(a) In the vector space $V=\mathbb{R}^{3}$ (over $F=\mathbb{R}$), with

$$
v=(-1,5,5) \quad S=\{(3,-1,1),(1,2,3)\}
$$

(b) In the vector space $V=\mathbb{C}^{3}$ (over field $F=\mathbb{C}$), with

$$
v=(1,0,0) \quad S=\{(i, 1,0),(-i, 1,0)\}
$$

(c) In the vector space $P_{3}(\mathbb{R})$ of polynomials of degree at most 3 , with

$$
v=x^{3}-2 x^{2} \quad S=\left\{x^{3}+2 x+2, x^{2}+x+3\right\}
$$

2. Let F be a field, and $V=F^{n}$. Let e_{j} be the n-tupel where all components are 0 , except the j-th component which is 1 . So $e_{1}=(1,0,0, \ldots, 0), e_{2}=(0,1,0, \ldots, 0)$ etc.
(a) Show that $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ generates F^{n}.
(b) Show that $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is linearly independent.
(c) What is the dimension of F^{n} ?
(d) If $F=\mathbb{F}_{5}$ is the field with 5 elements, prove that $\{(1,1),(2,3)\}$ is a basis of F^{2}.
3. Let x, y, z be vectors in a vector space V over an arbitrary field F. Prove that:
(a) If $\{x, y, z\}$ is linearly dependent then $\{x, x+y, x+y+z\}$ is linearly dependent.
(b) If $\{x, x+y, x+y+z\}$ is a basis of V then $\{x, y, z\}$ is a basis of V.
4. From the theory of differential equations, it is known that all solutions of the equation $f^{\prime \prime}(x)+$ $f(x)=0$ are of the form $f(x)=a \cos x+b \sin x$ for arbitrary $a, b \in \mathbb{R}$.
(a) Show that $\{\cos x, \sin x\}$ is a linearly independent subset of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
(b) What is the dimension of the subspace $W=\left\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f^{\prime \prime}(x)+f(x)=0\right\}$?

Remark. W is called the solution space of the equation $f^{\prime \prime}(x)+f(x)=0$.
5. Prove that $\{(1,0,0),(1,1,0),(1,1,1)\}$ is a basis of \mathbb{R}^{3}.
6. Let W_{1} and W_{2} be two finite dimensional subspaces of a vector space V. Suppose that $W_{1} \cap W_{2}=$ $\{0\}$, while the union $W_{1} \cup W_{2}$ generates V. Prove that

$$
\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)
$$

Hint. Show that the union of a basis for W_{1} and a basis for W_{2} is a basis for V.

