Math 24, Winter 2020, Pset 2

This problem set is due at the start of lecture on Wednesday January 22.

- 1. In each case below, determine whether $v \in \text{span}(S)$.
 - (a) In the vector space $V = \mathbb{R}^3$ (over $F = \mathbb{R}$), with

$$v = (-1, 5, 5)$$
 $S = \{(3, -1, 1), (1, 2, 3)\}$

(b) In the vector space $V = \mathbb{C}^3$ (over field $F = \mathbb{C}$), with

$$v = (1, 0, 0)$$
 $S = \{(i, 1, 0), (-i, 1, 0)\}$

(c) In the vector space $P_3(\mathbb{R})$ of polynomials of degree at most 3, with

$$v = x^3 - 2x^2$$
 $S = \{x^3 + 2x + 2, x^2 + x + 3\}$

- 2. Let F be a field, and $V = F^n$. Let e_j be the n-tupel where all components are 0, except the *j*-th component which is 1. So $e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0)$ etc.
 - (a) Show that $\{e_1, e_2, \ldots, e_n\}$ generates F^n .
 - (b) Show that $\{e_1, e_2, \ldots, e_n\}$ is linearly independent.
 - (c) What is the dimension of F^n ?
 - (d) If $F = \mathbb{F}_5$ is the field with 5 elements, prove that $\{(1,1), (2,3)\}$ is a basis of F^2 .
- 3. Let x, y, z be vectors in a vector space V over an arbitrary field F. Prove that:
 - (a) If $\{x, y, z\}$ is linearly dependent then $\{x, x + y, x + y + z\}$ is linearly dependent.
 - (b) If $\{x, x + y, x + y + z\}$ is a basis of V then $\{x, y, z\}$ is a basis of V.
- 4. From the theory of differential equations, it is known that all solutions of the equation f''(x) + f(x) = 0 are of the form $f(x) = a \cos x + b \sin x$ for arbitrary $a, b \in \mathbb{R}$.
 - (a) Show that $\{\cos x, \sin x\}$ is a linearly independent subset of $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
 - (b) What is the dimension of the subspace $W = \{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f''(x) + f(x) = 0\}$?

Remark. W is called the *solution space* of the equation f''(x) + f(x) = 0.

- 5. Prove that $\{(1,0,0), (1,1,0), (1,1,1)\}$ is a basis of \mathbb{R}^3 .
- 6. Let W_1 and W_2 be two finite dimensional subspaces of a vector space V. Suppose that $W_1 \cap W_2 = \{0\}$, while the union $W_1 \cup W_2$ generates V. Prove that

$$\dim(V) = \dim(W_1) + \dim(W_2)$$

Hint. Show that the union of a basis for W_1 and a basis for W_2 is a basis for V.