Math 24, Winter 2020, Pset 1

This problem set is due at the start of lecture on Wednesday January 15.

1. In this exercise, F is a field and V is a vector space over F. Prove the following statements. Justify each step in your proof.
(a) $(a+b)(x+y)=a x+a y+b x+b y$ for all $a, b \in F, x, y \in V$.
(b) If $c x=\mathbf{0}$ for some scalar $c \in F$ and vector $x \in V$, then either $c=0$ or $x=\mathbf{0}$. (The zero vector is denoted $\mathbf{0} \in V$, while the zero scalar is $0 \in F$.)
(c) Assume that F is one of the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}$. Then $v+v=2 v$.
2. (a) Let V be the set

$$
V=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{C} \text { for } i=1,2 \ldots, n\right\}
$$

By example 1 in section $1.2, V$ is a vector space over \mathbb{C}. Is V a vector space over \mathbb{R} with operations of coordinatewise addition and multiplication?
(b) Let V be the set

$$
V=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in \mathbb{R} \text { for } i=1,2 \ldots, n\right\}
$$

By example 1 in section $1.2, V$ is a vector space over \mathbb{R}. Is V a vector space over \mathbb{C} with operations of coordinatewise addition and multiplication?
3. If m, n, p are integers we say that m is congruent to n modulo $p($ denoted $m \equiv n \bmod p)$ if the difference $m-n$ is divisible by p.
Suppose $p \geq 2$ and consider the set

$$
\mathbb{F}_{p}=\{0,1,2, \ldots, p-1\}
$$

Elements of \mathbb{F}_{p} can be added as follows: The sum of two elements $a, b \in \mathbb{F}_{p}$ is defined to be the unique element $c \in \mathbb{F}_{p}$ such that $a+b \equiv c \bmod p$. Subtraction and multiplication of elements in \mathbb{F}_{p} (but not division!) are defined similarly.
For example, in $\mathbb{F}_{7}=\{0,1,2,3,4,5,6\}$ we have

- $3+2=2+3=5,2 \times 3=3 \times 2=6,3-2=1,2-3=6$;
- $4+6=6+4=3,4 \times 6=6 \times 4=3,4-6=5,6-4=2$.

It is easy to check that addition and multiplication in \mathbb{F}_{p} are commutative, associative, and distributive. We have $a+0=a$ and $1 \times a=a$ in \mathbb{F}_{p}. It turns out that if p is a prime number then \mathbb{F}_{p} is a field. To see this we need to verify that we can divide by any element other than zero.

Proposition 1 For all $a, b \in \mathbb{F}_{p}$, if $a \neq 0$ there exists a unique $c \in \mathbb{F}_{p}$ such that $a c=b$ in \mathbb{F}_{p}.
(a) For all $a, b, c \in \mathbb{F}_{p}$ with $a \neq 0$, prove that if $a b=a c$ in \mathbb{F}_{p} then $b=c$.

Hint. Recall that positive integers have a unique prime factorization. In particular, if $x y$ is divisible by p then either x is divisible by p or y is divisible by p.
(b) If $a \neq 0$ in \mathbb{F}_{p}, explain why no two elements in the set

$$
\{a \times 0, a \times 1, \cdots, a \times(p-1)\}
$$ are congruent modulo p.

(c) Prove the existence of the element $c \in \mathbb{F}_{p}$ in Proposition 1.
(d) Prove the uniqueness of the element $c \in \mathbb{F}_{p}$ in Proposition 1.
4. Give an example of two elements $a, b \in \mathbb{F}_{4}$ with $a \neq 0$ such that there does not exist c with $a c=b$ in \mathbb{F}_{4}. (In other words, \mathbb{F}_{4} is not a field.)
5. Let $V=F^{3}$ be the vector space of example 1 in section 1.2 for the finite field $F=\mathbb{F}_{5}$. In this vector space, calculate:
(a) With $c=3 \in \mathbb{F}_{5}$ and $x=(1,3,2) \in V$, what is $c x$?
(b) With $x=(1,3,2) \in V$ and $y=(0,4,3) \in V$, what is $x+y$?
(c) What is the additive inverse of the vector $x=(0,1,3)$ (as in axiom VS4)?
6. Give an example of a subspace $W \subset V$ of the vector space $V=F^{2}$ over the field $F=\mathbb{F}_{7}$ that is not $W=\{0\}$ or $W=V$. How many vectors are there in W ?

