Math 24
Winter 2017
Special Assignment due Monday, February 20
Let V be any vector space over F and W be a subspace of V. For any vector x in V, we defined the coset of W containing x to be

$$
x+W=\{x+w \mid w \in W\}
$$

We denote the collection of cosets by V / W.
It turns out that V / W forms a vector space over F, with operations defined by

$$
\begin{aligned}
& (x+W)+(y+W)=(x+y)+W \\
& a(x+W)=(a x)+W
\end{aligned}
$$

You may assume that this is true. (You proved part of this in the last two special homework assignments.)

Assignment: We can define a function T from V to V / W by $T(x)=x+W$.
Prove that T is a linear transformation.
Identify the null space and range of T.
If V is finite-dimensional, what can you conclude about the dimensions of V, W, and $V / W ?$

General comments: It is important to keep straight the difference between vectors in V and cosets in V / W.

The domain of T is V, and so $N(T)$ is a subset of V. Its elements are vectors in V. To identify the null space of T, you must find which vectors $v \in V$ satisfy $T(v)=0_{V / W}$. Remember that in the last assignment you showed that $0_{V / W}=0_{V}+W$.

The codomain of T is V / W, and so $R(T)$ is a subset of V / W. Its elements are cosets. To identify the range of T, you must find which cosets $x+W \in V / W$ satisfy $x+W=T(v)$ for some vector $v \in V$.

As a concrete example, consider the example in which $V=\mathbb{R}^{2}$, and W is the x-axis. We saw that the elements of V / W are horizontal lines (lines given by equations $y=b$), and for a vector $(a, b) \in V$, the coset of (a, b) is the line $y=b$. Then $T((a, b))$ is the line with equation $y=b$.

The zero vector of V / W is the coset $\overrightarrow{0}+W$. In this example, $0_{V / W}$ is the coset $(0,0)+W$, or the line $y=0$; that is, the x-axis.

The null space of T consists of all vectors $(a, b) \in \mathbb{R}^{2}$ for which $T((a, b))=\overrightarrow{0}_{V / W}$; that is, all vectors $(a, b) \in \mathbb{R}^{2}$ for which the line with equation $y=b$ is the x-axis; or, all vectors $(a, b) \in \mathbb{R}^{2}$ for which $b=0$. This is the x-axis, or W. In particular, notice that the elements of $N(T)$ are elements of R^{2}, or points.

The range of T consists of all horizontal lines that are $T((a, b))$ for some vector $(a, b) \in \mathbb{R}^{2}$; that is, all horizontal lines that have equation $y=b$ for some vector $(a, b) \in \mathbb{R}^{2}$. This includes all horizontal lines, so the range of T is the entire space V / W. In particular, notice that the elements of $R(T)$ are horizontal lines, not points.

In this case, the dimension of $N(T)$ is 1 , and the dimension of $R(T)$ is also 1 .
To see that the dimension of $R(T)$ is 1 , note that the line $y=b$ is the coset

$$
(0, b)+W=(b(0,1))+W=b((0,1)+W)
$$

The last step is because scalar multiplication in V / W is defined by $b(x+W)=(b x)+W$. This shows that every coset is a multiple of the coset $(0,1)+W$, so the single element $(0,1)+W$ forms a basis for V / W.

Intuitively, you may at first think that because the cosets cover the entire two-dimensional space \mathbb{R}^{2}, the dimension of V / W should be 2 . However, each coset is itself a line, which is a one-dimensional object. Very loosely, we have collapsed a one-dimensional piece of \mathbb{R}^{2} into a single element of V / W, which is why we lose a dimension.

