Math 24
Winter 2017
Special Assignment due Wednesday, January 18
Please hand in this assignment on a different piece of paper from the regular homework. Do not staple it together with the regular homework. (Be sure your name is on all assignments.)

Let V be any vector space and W be a subspace of V. For any vector x in V, we define the coset of W containing x to be

$$
x+W=\{x+w \mid w \in W\} .
$$

Example: If V is \mathbb{R}^{2} or \mathbb{R}^{3}, you can picture $x+W$ geometrically as a translation of W by the vector x. For example, if $V=\mathbb{R}^{2}$ and W is the x-axis,

$$
W=\{(x, 0) \mid x \in \mathbb{R}\}
$$

then the coset of W containing $(1,1)$ is given by

$$
(1,1)+W=\{(1,1)+(x, y) \mid(x, y) \in W\}=\{(1,1)+(x, 0) \mid x \in \mathbb{R}\}=\{(x+1,1) \mid x \in \mathbb{R}\}
$$

That is, $(1,1)+W$ is the line $y=1$.

In general, if W is the x-axis, then $(a, b)+W$, the coset of W containing (a, b), is the line through (a, b) parallel to the x-axis.

Example: In $P_{2}(\mathbb{Q})$, if

$$
W=\left\{a x^{2}+b x \mid a, b \in \mathbb{Q}\right\}
$$

is the subspace of polynomials with constant term equal to 0 , then the coset of $x+2$ is

$$
(x+2)+W=\left\{(x+2)+\left(a x^{2}+b x\right) \mid a, b \in \mathbb{Q}\right\}=\left\{a x^{2}+(b+1) x+2 \mid a, b \in \mathbb{Q}\right\}
$$

the subset of polynomials with constant term equal to 2 . (Don't be distracted by the fact that the coefficient of x is $(b+1)$. Since b can be any rational number $(b+1)$ can also be any rational number.)

Example: In $M_{2 \times 2}(\mathbb{R})$, if W is the subspace of matrices $\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$ whose diagonal entries sum to 0 , then $\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)+W$ is the subset of matrices $\left(\begin{array}{cc}1+a & b \\ 1+c & -a\end{array}\right)$ whose diagonal entries sum to 1 .

Assignment: Prove the following. For any vector space V and any subspace W of V :

1. For any x in V,

$$
x \in(x+W)
$$

2. For any x and y in V,

$$
(x-y) \in W \Longrightarrow(x+W)=(y+W)
$$

3. For any x and y in V,

$$
(x-y) \notin W \Longrightarrow(x+W) \cap(y+W)=\emptyset
$$

Note: To show $x \in x+W$, you must show that $x=x+w$ for some $w \in W$.
If X and Y are sets, one way to prove $X=Y$ is to prove every element of X is in Y, and every element of Y is in X. One way to prove $X=\emptyset$ is to assume there is a element in X, and get a contradiction.

Note: You can check in the example on the first page that these conditions hold for the cosets pictured. For example, $(1,1)-(0,1)$ is $(1,0)$, which belongs to W (the x-axis), and $(1,1)+W$ and $(0,1)+W$ are the same coset (the line $y=1)$.

Note: What you have shown is that the cosets of W form a partition of V. This means that different (unequal) cosets are disjoint (do not overlap), and together, the cosets cover all of V (every $x \in V$ belongs to some coset). In the example, the lines parallel to the x-axis form a partition of \mathbb{R}^{2}; every point belongs to exactly one line parallel to the x-axis.

