Math 24 Winter 2017

Sample Quiz Questions

January 11, 2017

These are examples of the kinds of questions that may be asked on x-hour quizzes. Generally, proofs on quizzes will be limited to very simple or concrete things. (Example: Let $S=\{(1,2,3),(2,2,4)\}$. Show that $(1,2,1)$ is not in the span of S.) You may be tested on knowing definitions and theorems, as well as how to solve problems. (Example: Find all solutions to the following system of equations.) You may also be asked to give examples or counterexamples. These are questions that could be asked on a quiz on sections 1.2 and 1.3. Sample solutions are on the next page.

1. Complete the sentence:
"The set X is closed under addition" means:
2. True or False? The existence of an additive identity element is a theorem about vector spaces.

Answer (circle one): TRUE FALSE

Brief explanation:

3. True or False? If v is an element of a vector space V over \mathbb{R}, then $v+v=2 v$.

Answer (circle one): TRUE FALSE

No explanation required.

4. Give a counterexample to show that the union of subspaces of a vector space V may not be a subspace of V. You do not need to show your answer is correct.
5. Give a geometric description of the smallest subspace of \mathbb{R}^{3} containing the x-axis and the line $x=y=z$. You do not need to show your answer is correct.
6. Complete the sentence:
"The set X is closed under addition" means:
For every x and y in X, the sum $x+y$ is in X.
7. True or False? The existence of an additive identity element is a theorem about vector spaces.

Answer (circle one): TRUE FALSE
Brief explanation: It's part of the definition of vector space.
3. True or False? If v is an element of a vector space V over \mathbb{R}, then $v+v=2 v$.

Answer (circle one): TRUE FALSE
No explanation required. But here's one anyway.

$$
v+v=(1 v)+(1 v)=(1+1) v=2 v
$$

Each step can be justified by one of the vector space axioms.
4. Give a counterexample to show that the union of subspaces of a vector space V may not be a subspace of V. You do not need to show your answer is correct.
The x-axis and the y-axis are subspaces of \mathbb{R}^{3}, but their union is not.
5. Give a geometric description of the smallest subspace of \mathbb{R}^{3} containing the x-axis and the line $x=y=z$. You do not need to show your answer is correct.
The plane with equation $y=z$.
or
The plane with normal vector $(0,1,-1)$.

