Math 24
Winter 2014
Special Assignment due Monday, March 3
Let V be any n-dimensional vector space over F and W be a k-dimensional subspace of V. We know that V / W is a vector space, and that $T(x)=x+W$ is a linear transformation from V to V / W.

Assignment: Let $\alpha=\left\{\vec{w}_{1}, \ldots, \vec{w}_{k}\right\}$ be a basis for W that is contained in a basis $\beta=$ $\left\{\vec{w}_{1}, \ldots, \vec{w}_{k}, \vec{v}_{k+1}, \ldots, \vec{v}_{n}\right\}$ for V. Show that if $\gamma=\left\{\vec{v}_{k+1}+W, \ldots, \vec{v}_{n}+W\right\}$, then γ is a basis for V / W.

Hint: To prove this directly, you need to show two things: γ spans V / W, and γ is linearly independent. You can do this by using the facts that β spans V, and β is linearly independent. For linear independence, you can note that if

$$
a_{k+1}\left(\vec{v}_{k+1}+W\right)+\cdots+a_{n}\left(\vec{v}_{n}+W\right)=0_{V / W}
$$

that means that

$$
\left(a_{k+1} \vec{v}_{k+1}+\cdots a_{n} \vec{v}_{n}\right)+W=\overrightarrow{0}+W,
$$

and we know from earlier assignments under what conditions we have $\vec{x}+W=\vec{y}+W$.
As an alternative, you can simplify this proof by using the results of the previous special assignment.

