Math 24
Winter 2014
Thursday, January 23
(1.) TRUE or FALSE? In these exercises, V and W are finite-dimensional vector spaces over the same field F, and T is a function from V to W.
a. If T is linear, then T preserves sums and scalar products. (T)

This is the definition of linear.
b. If $T(x+y)=T(x)+T(y)$, then T is linear. (F)

We must also have $T(a x)=a T(x)$.
c. T is one-to-one if and only if the only vector x such that $T(x)=0$ is $x=0$. (F) This is true if T is linear.
d. If T is linear, then $T\left(0_{V}\right)=0_{W}$. (T)
e. If T is linear, then $\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(W)$. (F) $\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V)$.
f. If T is linear, then T carries linearly independent subsets of V onto linearly independent subsets of W. (F)

For example, the zero transformation $T(x)=0$, carries linearly independent sets onto $\{0\}$. Any linear T does, however, carry linearly dependent subsets of V onto linearly dependent subsets of W.
g. If $T: V \rightarrow W$ and $U: V \rightarrow W$ are both linear and agree on a basis for V (meaning that if x is in the basis, $T(x)=U(x)$), then $T=U$. (T$)$
h. Given $x_{1}, x_{2} \in V$ and $y_{1}, y_{2} \in W$, there exists a linear transformation $T: V \rightarrow W$ such that $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$. (F)
For example, if $x_{2}=2 x_{1}$ but $y_{2} \neq 2 y_{1}$, there is no such T. This is true, however, if $\left\{x_{1}, x_{2}\right\}$ is linearly independent.
i. Recall that we can consider \mathbb{R} to be a vector space over itself. Any function $T: \mathbb{R} \rightarrow \mathbb{R}$ of the form $T(x)=m x+b$, where m and b are constants in \mathbb{R}, is linear. (F)

If $b \neq 0$, then $T(0) \neq 0$, so T cannot be linear. This is an affine function, the sum of a linear function and a constant function. If $b=0$, it is linear.
j. The words "range," "image," and "codomain" all mean the same thing. (F)

Range and image denote $R(T)$; codomain denotes W.
k. If $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ is linear and $N(T)$ is the subspace of diagonal matrices in $M_{2 \times 2}(\mathbb{R})$, then T is not onto. (T)
We have $n(T)=2$ and $\operatorname{dim}(\operatorname{domain}(T))=4$, so by the dimension theorem, $r(T)=2$. Since the codomain has dimension $3, T$ s not onto.
(2.) Explain why we know that the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is not linear.

Just for fun, we'll use a different argument for each example.
a. $T\left(a_{1}, a_{2}\right)=\left(1, a_{2}\right)$.
T does not send zero to zero: $T(0,0) \neq(0,0)$.
b. $T\left(a_{1}, a_{2}\right)=\left(a_{1},\left(a_{1}\right)^{2}\right)$.
T does not preserve scalar products: $2(T(1,0)) \neq T(2(1,0))$.
c. $T\left(a_{1}, a_{2}\right)=\left(\sin \left(a_{1}\right), 0\right)$.

The null space of T is not a subspace of \mathbb{R}^{2}. (It includes $(\pi, 0)$ but not $\frac{1}{2}(\pi, 0)$.)
d. $T\left(a_{1}, a_{2}\right)=\left(\left|a_{1}\right|, a_{2}\right)$.

The range of T is not a subspace of \mathbb{R}^{2}. (It includes $(1,1)$ but not $-(1,1)$.)
e. $T\left(a_{1}, a_{2}\right)=\left(a_{1}+1, a_{2}\right)$.
T does not preserve sums: $T((0,0)+(0,0)) \neq T(0,0)+T(0,0)$.
(3.) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $T(x, y, z)=(2 x-y, 2 y-z, 4 x-z)$.
a. Find a basis for the null space of T.

We need to find a basis for the solution space for the system of linear equations

$$
\begin{aligned}
& 2 x-y=0 \\
& 2 y-z=0 \\
& 4 x-z=0
\end{aligned}
$$

Gaussian elimination converts this system to

$$
\begin{gathered}
x-\frac{1}{4} z=0 \\
y-\frac{1}{2} z=0 \\
0=0 .
\end{gathered}
$$

We use the first two equations to solve for x and y, and set z equal to a parameter, s :

$$
(x, y, z)=\left(\frac{1}{4} s, \frac{1}{2} s, s\right)=s\left(\frac{1}{4}, \frac{1}{2}, 1\right) .
$$

The null space consists of all vectors of this form, and a basis is

$$
\left\{\left(\frac{1}{4}, \frac{1}{2}, 1\right)\right\} .
$$

b. Find a basis for the range of T.

Since the domain of T is spanned by the set $\{(1,0,0),(0,1,0),(0,0,1)\}$, the range of T is spanned by the set

$$
\{T(1,0,0), T(0,1,0), T(0,0,1)\}=\{(2,0,4),(-1,2,0),(0,-1,-1)\}
$$

Since this set spans the range, we can reduce it to a basis, by considering its elements one by one and eliminating any that is a linear combination of the earlier ones. This gives us the basis

$$
\{(2,0,4),(-1,2,0)\} .
$$

c. Find the nullity and rank of T. Verify the dimension theorem (in the case of T).

The dimension theorem tells us that

$$
n(T)+r(T)=\operatorname{dim}(\operatorname{domain}(T)) .
$$

The nullity of T is the dimension of the null space, in this case $n(T)=1$, the rank of T is the dimension of the range, in this case $r(T)=2$, and in this case the domain of T is \mathbb{R}^{3}, so $\operatorname{dim}(\operatorname{domain}(T))=3$. It is true that

$$
1+2=3,
$$

which verifies the dimension theorem in this case.
d. Is T one-to-one? How can you tell from the nullity and/or rank of T ?
T is not one-to-one. We can tell because the nullity of T is not zero.
e. Is T onto? How can you tell from the nullity and/or rank of T ?
T is not onto. We can tell because the rank of T does not equal the dimension of the codomain.

