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Picturing Linear Transformations and Proving the Dimension Theorem

We’ll begin by talking about visualizing linear transformations, and consequences of the
dimension theorem. We’ll talk about proving the dimension theorem later.

First, let’s consider the linear transformation T : R2 → R2 defined by

T (x, y) = (2x + y, x + 2y).

We can check that the only solution to T (x, y) = (0, 0) is (x, y) = (0, 0), so the null space
(or kernel) of T is {(0, 0)}, and the nullity of T is n(T ) = 0. Because the nullity of T is 0,
we know that T is one-to-one.

The dimension theorem tells us that the rank of T is given by

r(T ) = dim(domain(T ))− n(T ) = 2− 0 = 2.

In this case, the range (or image) of T is a dimension 2 subspace of the codomain. Since the
range of T has the same dimension as the codomain R2, we know that T is onto.

We can visualize T as follows: We can think of the standard basis of R2 as imposing a
grid on R2, consisting of lines parallel to basis vector (1, 0) and lines parallel to basis vector
(0, 1). The transformation T picks up these basis vectors and places them down again on
T (1, 0) and T (0, 1) (in this case, (2, 1) and (1, 2)), carrying the entire grid along.

The pictures on the next page illustrate this. Figure 1 shows part of the grid (including
the edges of the unit square, the basis vectors (1, 0) and (0, 1), shown as thick lines of red
and green, respectively). Figure 2 shows where this part of the grid is mapped by T . It’s
not hard to imagine how a point inside the unit square is carried along to a corresponding
position inside the parallelogram that is the image of the unit square.
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Figure 1: This is the unit square, with edges the standard basis vectors.

Figure 2: This is the image of the unit square.
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Now let’s consider the linear transformation T : R3 → R2 defined by

T (x, y, z) = (x− y, x− z).

The general solution to T (x, y, z) = (0, 0) is (x, y, z) = (s, s, s), where s can be any real
number. Therefore a basis for N(T ) is {(1, 1, 1)}, and the nullity of T is n(T ) = 1. Since
the nullity of T is not zero, we know T is not one-to-one.

The dimension theorem tells us that the rank of T is given by

r(T ) = dim(domain(T ))− n(T ) = 3− 1 = 2.

In this case, the range (or image) of T is a dimension 2 subspace of the codomain. Since the
range of T has the same dimension as the codomain R2, we know that T is onto.

We can try to use the same strategy as before to visualize T . Figure 3 on the next page
pictures the edges of the unit cube in R3, with the standard basis vectors indicated by thick
lines of red, green, and blue. Figure 4 shows where in the plane R2 this cube is mapped by
T . Apparently T flattens the cube onto a portion of R2, but it’s not as easy as in our last
example to visualize what happens to a point in the interior.
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Figure 3: This is the unit cube in R3 with edges the standard basis vectors.

Figure 4: This is the image in R2 of the unit cube.
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We are still considering the linear transformation T : R3 → R2 defined by

T (x, y, z) = (x− y, x− z).

It will be easier to visualize T if we think about a different basis.
We saw that a basis for N(T ) is {(1, 1, 1}. We can extend this to a basis for R3, say

{(1, 1, 1), (1,−1, 0), (0, 1,−1)}.
Figure 5 on the next page shows the edges of the parallelopiped with these vectors as

edges, with the basis vectors again indicated by thick lines of red, green, and blue. Figure 6
shows where in the plane R2 this parallelopiped is mapped by T . This picture is cleaner,
because the red lines all go to points. The parallelogram is the image of the three-dimensional
parallelopiped, and it’s also the image of the face of the parallelopiped that has the thick
blue and green basis vectors as edges.

If we call that face F , we can visualize T as follows: First flatten the entire parallelopiped
onto face F , by contracting the red edges to points. Points in the interior of the parallelopiped
travel along lines parallel to the red edges to reach points on F . Now, send F to R2 by sending
the thick green and blue basis vectors to the vectors shown in Figure 6, carrying points inside
face F to corresponding positions inside the parallelogram that is the image of F .

Of course, T is actually defined on all of R3, but you can think of it the same way: First
flatten all of R3 onto the plane containing F , by moving every point along a line parallel
to the red basis vector. Then send the green and blue basis vectors to their images in R2,
carrying the entire plane along.
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Figure 5: This is a parallelopiped, with edges our new basis vectors.

Figure 6: This is the image of the parallelopiped. The red lines go to points.
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This strategy of extending a basis for N(T ) to a basis for the domain of T is used in the
proof of the dimension theorem. The idea is that, as in our pictures, the elements of the
basis of N(T ) go to zero, and the remaining basis elements go to non-interfering (linearly
independent) images that form a basis for the range R(T ).

So suppose T : V → W , where V has finite dimension m, and N(T ) has dimension
n ≤ m. Let {x1, . . . , xn} be a basis for N(T ).

Since every linearly independent subset of V can be extended to a basis for V , and
every basis for V contains exactly m elements, we can extend our basis for N(T ) to a basis
{x1, . . . , xn, y1, . . . , ym−n} for V .

We will show that {T (y1), . . . , T (ym−n)} is a basis for the range R(T ). Then we will have
r(T ) = dim(R(T )) = m− n. Since m = dim(V ) and n = dim(N(T )) = n(T ), this will give

r(T ) + n(T ) = dim(V ),

which is the dimension theorem.
First, to show {T (y1), . . . , T (ym−n)} spans the range of T , we must show that every vector

T (v) in the range can be written as a linear combination of these elements.
Every v ∈ V can be written as a linear combination of the elements of our basis for V ,

v = a1x1 + · · ·+ anxn + b1y1 + · · ·+ bm−nym−n.

Applying T , and using its linearity and the fact that the xi are in the null space of T , we see

T (v) = T (a1x1 + · · ·+ anxn + b1y1 + · · ·+ bm−nym−n)

T (v) = a1T (x1) + · · ·+ anT (xn) + b1T (y1) + · · ·+ bm−nT (ym−n)

T (v) = a10 + · · ·+ an0 + b1T (y1) + · · ·+ bm−nT (ym−n)

T (v) = b1T (y1) + · · ·+ bm−nT (ym−n),

which is what we needed to show.
Now, to show {T (y1), . . . , T (ym−n)} is linearly independent, suppose not, and deduce a

contradiction. Because we are assuming this set is linearly dependent, we can express the
zero vector as a nontrivial linear combination of the vectors in {T (y1), . . . , T (ym−n)},

0 = c1T (y1) + · · · cm−nT (ym−n),

where at least one ci is nonzero. We use the linearity properties of T again:

0 = T (c1y1 + · · · cm−nym−n).

That is to say, c1y1 + · · ·+cm−nym−n is an element of the null space of T . Now {x1, . . . , xn} is
a basis for N(T ), which means we can express any element of N(T ) as a linear combination
of these vectors. In particular, we can write

c1y1 + · · ·+ cm−nym−n = d1x1 + · · ·+ dnxn

c1y1 + · · ·+ cm−nym−n − d1x1 − · · · dnxn = 0.

Since at least one ci is nonzero, we have written the zero vector as a nontrivial linear combina-
tion of elements of the basis {x1, . . . , xn, y1, . . . , ym−n}. Since a basis is linearly independent,
this is the contradiction we were looking for.
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