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As we discussed in class, row reduction is good for more than just solving systems of
linear equations – or rather, solving systems of linear equations are good for more than
simply finding coefficients of some particular linear combination. There are a few steps.

Observation 1. Every row operation corresponds to a matrix product. To execute a row
operation on M , simply perform that row operation to In to obtain a matrix E, and take
the product EM . For example:  1 1 0

0 1 0
0 0 1

M

produces a matrix which agrees with M on rows 2 and 3, but has as its row 1 the sum of
M ’s rows 1 and 2.

Observation 2. When using row reduction to solve a system of linear equations, the
constants of the system are ignored in deciding what row operations to perform. Only the
coefficients matter.

Observation 3. In the matrix product AB, A acts on each of B’s columns individually,
without interaction. That is, the ith column of AB is the product of A with the ith column
of B.

Putting together 2 and 3, we see that multiple systems of linear equations, provided
they have the same coefficients, may be solved simultaneously by augmenting the matrix of
coefficients with multiple columns, one for each set of constants.

Observation 4. We may interpret any system of linear equations as a question of the
image of a linear transformation: is the vector of constants in the image of the linear trans-
formation given by the matrix of coefficients? We may also turn that around and apply row
reduction to figure out the image of a linear transformation.

Observation 5. A linear transformation T from Rn to itself is an isomorphism if and
only if the standard basis is in T ’s image.

Putting together 4 and 5, we see we can determine whether T is an isomorphism
by solving the system of linear equations with T ’s matrix MT as its coefficients and each
standard basis vector of Rn in turn as the constants. From our previous observations it
follows we can actually do this all at once: augment MT by In and row-reduce. If you obtain
something of the form [In M ] (first n columns are the identity, second n columns are where
the identity was before row reducing), then you know every basis vector of Rn is in the image
of T because every one of the systems of linear equations has a solution.

Finally, we recall Observation 1, combined with 3, to see that we have really taken a
string of row operation matrices and multiplied them by MT and the identity matrix simul-
taneously but separately. Since that string of matrices, multiplied together into the single
matrix M , gave the identity when multiplied by MT , it must be MT ’s inverse. Multiplying
by In just gives M back, so the second n columns of the reduced matrix [In M ] are the
inverse of MT . If MT will not row reduce to the identity, there will be vectors outside its
image, so it is not invertible.



Example.

The matrix MT below has linearly independent columns, so T is an isomorphism and so
has an inverse. We will use row reduction to find its inverse.

MT =

 3 2 0
−1 0 1
0 2 2


 3 2 0 1 0 0

−1 0 1 0 1 0
0 2 2 0 0 1

 swap first two rows
also multiply original second row by −1

 1 0 −1 0 −1 0
3 2 0 1 0 0
0 2 2 0 0 1

 multiply row 1 by −3 and add to 2

 1 0 −1 0 −1 0
0 2 3 1 3 0
0 2 2 0 0 1

 multiply row 2 by 1/2
multiply (current) row 2 by −1 and add to row 3 1 0 −1 0 −1 0

0 1 3/2 1/2 3/2 0
0 0 −1 −1 −3 1

 multiply row 3 by −1 and add to row 2
multiply row 3 by 3/2 and add to row 2
multiply row 3 by −1 1 0 0 1 2 −1

0 1 0 −1 −3 3/2
0 0 1 1 3 −1


The row reduction above shows that the inverse matrix to MT is

M−1
T =

 1 2 −1
−1 −3 3/2
1 3 −1


Interpreted as a collection of three systems of linear equations with the same coefficients

but different constants, it also shows that T (1,−1, 1) = (1, 0, 0), T (2,−3, 3) = (0, 1, 0), and
T (−1, 3

2
,−1) = (0, 0, 1).


