
Final Exam Practice Problems Volume 2 – Answers
Math 24 Winter 2012

(1) Find the kernel of the transformation given by matrix A below. What does that tell
you about the transformation given by matrix B?

A =

 1 2 0
1 −1 −3
0 1 1

 B =

 3 2 0
1 1 −3
0 1 3


Note that A = B − 2I. Row reduction shows the kernel of A is nontrivial, spanned
by (2,−1, 1), which indicates 2 is an eigenvalue for B with eigenspace spanned by
(2,−1, 1).

(2) Show that if A, B are diagonal n× n matrices, then AB = BA.

The product of two diagonal matrices is simply the product of the corresponding
diagonal entries, which means commutativity of the matrix product comes directly
from commutativity of products in R.

(3) The trace of a square matrix A, trA, is the sum of A’s diagonal entries.

(a) Find trA for A =

 3 5 −1
3 −8 2
0 1 2

.

3− 8 + 2 = −3

(b) It can be shown that tr(FG) = tr(GF ) for any two n × n matrices F and G.
Using that fact, show that if A and B are similar, then trA = trB.

See problem 8 for work on similarity; trA = tr(Q−1BQ) = tr(Q−1(BQ)) =
tr((BQ)Q−1) = tr(BI) = trB.

(c) Suppose A is a diagonalizable n× n matrix. Show the trace of A is the sum of
the eigenvalues of A (including multiplicity). [This is in fact true even if A is
not diagonalizable, but don’t worry about the general case.]

For A is diagonalizable, A must be similar to the diagonal matrix with diagonal
entries the eigenvalues of A with multiplicity. The trace of that matrix is clearly
the sum of the eigenvalues of A with multiplicity, and by part (b) it equals the
trace of A.

(4) Let A, B be n× n matrices with rank k and `, respectively. Put an upper bound on
the rank of AB.

The rank of a matrix is the dimension of its image. The image of A has dimension
k, so certainly AB must have rank bounded above by k. However, the dimension of
the image of a transformation is also bounded by the dimension of the domain, and
since the image of B has dimension ` our effective domain is dimension `. The rank
of AB is bounded above by min{k, `}.
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(5) For a polynomial f(x) in P(R), let F (x) be the polynomial with constant term 0
such that F ′(x) = f(x). Is the map from P(R) to itself that takes each f(x) to the
corresponding F (x) a linear transformation?

Certainly the antiderivative (with constant 0) of a finite degree polynomial is a fi-
nite degree polynomial. Since integration has the correct relationship to addition
and scalar multiplication, and we have specified a zero constant of integration, the
transformation is in fact linear. We do not need to separately check that it maps the
zero vector to itself because that is a consequence of linearity.

(6) Show that if A and B are square and AB is invertible, then both A and B are
invertible.

This is shown most simply by observing det(AB) = det(A) det(B), and if the left
hand side is nonzero both factors of the right hand side must also be nonzero.

(7) Determine whether the following two linear transformations are invertible, and if so
find the inverse.

(a) T : P2(R)→ R3 given by T (f(x)) = (f(0), f(1), f(−1)).

We see if we can reconstruct a unique polynomial from any vector of R3. For
f(x) = a0 +a1x+a2x

2, f(0) = a0, f(1) = a0 +a1 +a2, and f(−1) = a0−a1 +a2.
From (b0, b1, b2) we clearly need a0 = b0, and then a1 + a2 = b1 − b0, −a1 + a2 =

b2− b0. The matrix

[
1 1
−1 1

]
is invertible, so this has a solution for any choice

of b0, b1, b2, and T is invertible.

(b) T : P2(R)→ Mat2,2 given by T (f(x)) =

[
f(0) f(1)
f ′(0) f ′(1)

]
.

This is a transformation from a 3-dimensional space to a 4-dimensional space,
and so is not invertible.

(8) Matrix A is similar to matrix B if there is an invertible matrix P such that P−1AP =
B.
(a) Show that if A is similar to B, B is similar to A.

If P−1AP = B, then A = PBP−1, so the invertible matrix P−1 shows B is
similar to A.

(b) Find all matrices X such that In is similar to X.

We must have X = P−1InP , but that simplifies to X = In.

(c) Suppose A = QR where Q is invertible. Show A is similar to RQ.

We use Q for the similarity: Q−1AQ = Q−1QRQ = RQ.

(9) If W is a subspace of a vector space V and v is a vector in V , define v+W = {v+w :
w ∈ W} (a subset of V ).
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(a) If V = R2 and W = L{(1, 1)}, geometrically describe all possible sets v + W .

W itself is the line x = y, and the sets v + W are all lines with the same slope
as x = y but varying intercepts.

(b) Show that if v ∈ W , then v + W = W . [From here on, V is an arbitrary vector
space.]

Since W is closed under vector addition, it is clear from the definition that
v + W ⊆ W . We get equality because −v ∈ W ; for any w ∈ W we may add
−v + w to v to obtain w.

(c) Show that if v /∈ W , then (v + W ) ∩W = ∅.
Suppose the intersection is nonempty, so there are some w1, w2 ∈ W such that
v + w1 = w2. Then v = w2 − w1, so since W is closed, v ∈ W .

(d) For what vectors v is v + W a subspace of V ?

For exactly the vectors in W . In the preceding parts we have seen v ∈ W implies
v +W = W , a subspace, and v /∈ W implies v +W ∩W = ∅, so v +W does not
contain the zero vector and hence cannot be a subspace.

(e) Prove that v1 + W = v2 + W if and only if v1 − v2 ∈ W .

If v1 + W = v2 + W , then for every w1 ∈ W there is some w2 ∈ W such that
v1 +w1 = v2 +w2, and vice-versa. But then v1− v2 = w2−w1 ∈ W . Conversely,
if v1 − v2 ∈ W and we take any w1 ∈ W , v1 + w1 = v2 + (v1 − v2) + w1, which is
the sum of v2 with a vector of W . This shows v1 + W ⊆ v2 + W , and a similar
argument shows the reverse inclusion, giving equality.

(f) Addition and scalar multiplication may be defined as follows:

(v1 + W ) + (v2 + W ) = (v1 + v2) + W and a(v + W ) = (av) + W.

Prove that these operations are well-defined; that is, show that if v1+W = v′1+W
and v2 + W = v′2 + W , then

(v1 + W ) + (v2 + W ) = (v′1 + W ) + (v′2 + W ) and a(v1 + W ) = a(v′1 + W ).

By part (e) we know v1 − v′1 and v2 − v′2 are elements of W , so (v′1 + v′2) + w1 =
(v′1+v′2)+(v1−v′1)+(v2−v′2)+w2 = (v1+v2)+w2 Symmetrically, every element
of (v1 + v2) +W is also in (v′1 + v′2) +W . The argument for scalar multiplication
is similar.

(g) Parts (e) and (f) show that we can put an addition and scalar multiplication on
the quotient space V/W , where the elements of V/W are the sets v + W (each
one may have multiple representations v1 + W, v2 + W , etc., but we have shown
it does not alter the result of addition and multiplication to choose a different
representation).
In fact, V/W is a vector space. What is its additive identity (zero vector)?
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The additive identity of V/W is W : W = 0+W , so by part (f), W + (v+W ) =
(0 + v) + W = v + W .

(10) Suppose that with respect to the basis {(1, 0, 1), (0, 1, 0), (1, 0,−1)} the transforma-
tion T has the following matrix. 3 0 0

0 −1 0
0 0 2


(a) What is the matrix for T with respect to the standard basis?

After finding the change of basis matrix that takes vectors to coordinates, we
find the standard basis matrix for T is the following product: 1 0 1
0 1 0
1 0 −1

 3 0 0
0 −1 0
0 0 2

 1/2 0 1/2
0 1 0

1/2 0 −1/2

 =

 5/2 0 1/2
0 −1 0

1/2 0 5/2


(b) What is the hundredth power of the matrix from part (a)?

T is a linear transformation, and it maps vectors to the same vectors regardless of
the basis we choose. Therefore the hundredth power of the matrix in (a) may be
found by taking the hundredth power of the diagonal matrix before multiplying
with the change of basis matrices (this is also seen by the fact that they are
inverses to each other, so if we line up a hundred copies of that trio of matrices
the matched pairs will cancel out):

1

2

 3100 + 2100 0 3100 − 2100

0 2 0
3100 − 2100 0 3100 + 2100


(11) If X,Y are eigenvectors for the linear transformation T , is X + Y an eigenvector

for T?

Only if X,Y are eigenvectors for the same eigenvalue and hence in the same eigenspace.
Otherwise no, because X +Y would have to be an eigenvector for yet a third eigen-
value (otherwise we would contradict the distinctness of the individual vectors’ eigen-
values), but then we would contradict the linear independence of eigenvectors drawn
from distinct eigenspaces.

(12) Consider the linear transformation T : R5 → P2(R) given by T (a1, a2, a3, a4, a5) =
(a1 + a2)x

2 − (a4 + a5)x + a2 − a3.

(a) What are the image and kernel of T?

To be in the kernel, a vector must have a1 + a2 = a4 + a5 = a2 − a3 = 0. That
corresponds to a matrix with the following reduced echelon form: 1 0 1 0 0

0 1 −1 0 0
0 0 0 1 1


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This is a space of dimension 2, spanned by the set {(−1, 1, 1, 0, 0), (0, 0, 0, 1,−1)}.
Since the dimension formula tells us the dimension of the image will be dim(R5)−
dim(ker(T )) = 5− 2 = 3 = dim(P2(R)), the image is all of P2(R).

(b) Find an orthonormal basis for the kernel of T , with respect to the standard
scalar product on R5.

The basis is already orthogonal, so we need only divide each vector by its length.
We get {(−1/

√
3, 1/
√

3, 1/
√

3, 0, 0), (0, 0, 0, 1/
√

2,−1/
√

2)}.
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