Final Exam Practice Problems Volume 2
 Math 24 Winter 2012

(1) Find the kernel of the transformation given by matrix A below. What does that tell you about the transformation given by matrix B ?

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & -1 & -3 \\
0 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
3 & 2 & 0 \\
1 & 1 & -3 \\
0 & 1 & 3
\end{array}\right]
$$

(2) Show that if A, B are diagonal $n \times n$ matrices, then $A B=B A$.
(3) The trace of a square matrix $A, \operatorname{tr} A$, is the sum of A 's diagonal entries.
(a) Find $\operatorname{tr} A$ for $A=\left[\begin{array}{ccc}3 & 5 & -1 \\ 3 & -8 & 2 \\ 0 & 1 & 2\end{array}\right]$.
(b) It can be shown that $\operatorname{tr}(F G)=\operatorname{tr}(G F)$ for any two $n \times n$ matrices F and G. Using that fact, show that if A and B are similar, then $\operatorname{tr} A=\operatorname{tr} B$.
(c) Suppose A is a diagonalizable $n \times n$ matrix. Show the trace of A is the sum of the eigenvalues of A (including multiplicity). [This is in fact true even if A is not diagonalizable, but don't worry about the general case.]
(4) Let A, B be $n \times n$ matrices with rank k and ℓ, respectively. Put an upper bound on the rank of $A B$.
(5) For a polynomial $f(x)$ in $\mathcal{P}(\mathbb{R})$, let $F(x)$ be the polynomial with constant term 0 such that $F^{\prime}(x)=f(x)$. Is the map from $\mathcal{P}(\mathbb{R})$ to itself that takes each $f(x)$ to the corresponding $F(x)$ a linear transformation?
(6) Show that if A and B are square and $A B$ is invertible, then both A and B are invertible.
(7) Determine whether the following two linear transformations are invertible, and if so find the inverse.
(a) $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ given by $T(f(x))=(f(0), f(1), f(-1))$.
(b) $T: \mathcal{P}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2,2}$ given by $T(f(x))=\left[\begin{array}{cc}f(0) & f(1) \\ f^{\prime}(0) & f^{\prime}(1)\end{array}\right]$.
(8) Matrix A is similar to matrix B if there is an invertible matrix P such that $P^{-1} A P=$ B.
(a) Show that if A is similar to B, B is similar to A.
(b) Find all matrices X such that I_{n} is similar to X.
(c) Suppose $A=Q R$ where Q is invertible. Show A is similar to $R Q$.
(9) If W is a subspace of a vector space V and v is a vector in V, define $v+W=\{v+w$: $w \in W\}$ (a subset of V).
(a) If $V=\mathbb{R}^{2}$ and $W=\mathcal{L}\{(1,1)\}$, geometrically describe all possible sets $v+W$.
(b) Show that if $v \in W$, then $v+W=W$. [From here on, V is an arbitrary vector space.]
(c) Show that if $v \notin W$, then $(v+W) \cap W=\emptyset$.
(d) For what vectors v is $v+W$ a subspace of V ?
(e) Prove that $v_{1}+W=v_{2}+W$ if and only if $v_{1}-v_{2} \in W$.
(f) Addition and scalar multiplication may be defined as follows: $\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}+v_{2}\right)+W \quad$ and $\quad a(v+W)=(a v)+W$.
Prove that these operations are well-defined; that is, show that if $v_{1}+W=v_{1}^{\prime}+W$ and $v_{2}+W=v_{2}^{\prime}+W$, then $\left(v_{1}+W\right)+\left(v_{2}+W\right)=\left(v_{1}^{\prime}+W\right)+\left(v_{2}^{\prime}+W\right) \quad$ and $\quad a\left(v_{1}+W\right)=a\left(v_{1}^{\prime}+W\right)$.
(g) Parts (e) and (f) show that we can put an addition and scalar multiplication on the quotient space V / W, where the elements of V / W are the sets $v+W$ (each one may have multiple representations $v_{1}+W, v_{2}+W$, etc., but we have shown it does not alter the result of addition and multiplication to choose a different representation).
In fact, V / W is a vector space. What is its additive identity (zero vector)?
(10) Suppose that with respect to the basis $\{(1,0,1),(0,1,0),(1,0,-1)\}$ the transformation T has the following matrix.

$$
\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

(a) What is the matrix for T with respect to the standard basis?
(b) What is the hundredth power of the matrix from part (a)?
(11) If $\boldsymbol{X}, \boldsymbol{Y}$ are eigenvectors for the linear transformation T, is $\boldsymbol{X}+\boldsymbol{Y}$ an eigenvector for T ?
(12) Consider the linear transformation $T: \mathbb{R}^{5} \rightarrow \mathcal{P}_{2}(\mathbb{R})$ given by $T\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=$ $\left(a_{1}+a_{2}\right) x^{2}-\left(a_{4}+a_{5}\right) x+a_{2}-a_{3}$.
(a) What are the image and kernel of T ?
(b) Find an orthonormal basis for the kernel of T, with respect to the standard scalar product on \mathbb{R}^{5}.

