Final Exam Practice Problems Volume 2 Math 24 Winter 2012

(1) Find the kernel of the transformation given by matrix A below. What does that tell you about the transformation given by matrix B?

	1	2	0 -		3	2	0]
A =	1	-1	-3	B =	1	1	-3
	0	1	1		0	1	3

- (2) Show that if A, B are diagonal $n \times n$ matrices, then AB = BA.
- (3) The *trace* of a square matrix A, tr A, is the sum of A's diagonal entries.

(a) Find tr A for
$$A = \begin{bmatrix} 3 & 5 & -1 \\ 3 & -8 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

- (b) It can be shown that tr(FG) = tr(GF) for any two $n \times n$ matrices F and G. Using that fact, show that if A and B are similar, then tr A = tr B.
- (c) Suppose A is a diagonalizable $n \times n$ matrix. Show the trace of A is the sum of the eigenvalues of A (including multiplicity). [This is in fact true even if A is not diagonalizable, but don't worry about the general case.]
- (4) Let A, B be $n \times n$ matrices with rank k and ℓ , respectively. Put an upper bound on the rank of AB.
- (5) For a polynomial f(x) in $\mathcal{P}(\mathbb{R})$, let F(x) be the polynomial with constant term 0 such that F'(x) = f(x). Is the map from $\mathcal{P}(\mathbb{R})$ to itself that takes each f(x) to the corresponding F(x) a linear transformation?
- (6) Show that if A and B are square and AB is invertible, then both A and B are invertible.
- (7) Determine whether the following two linear transformations are invertible, and if so find the inverse.

(a)
$$T: \mathcal{P}_2(\mathbb{R}) \to \mathbb{R}^3$$
 given by $T(f(x)) = (f(0), f(1), f(-1)).$
(b) $T: \mathcal{P}_2(\mathbb{R}) \to \operatorname{Mat}_{2,2}$ given by $T(f(x)) = \begin{bmatrix} f(0) & f(1) \\ f'(0) & f'(1) \end{bmatrix}.$

- (8) Matrix A is similar to matrix B if there is an invertible matrix P such that $P^{-1}AP = B$.
 - (a) Show that if A is similar to B, B is similar to A.
 - (b) Find all matrices X such that I_n is similar to X.
 - (c) Suppose A = QR where Q is invertible. Show A is similar to RQ.

- (9) If W is a subspace of a vector space V and v is a vector in V, define $v + W = \{v + w : w \in W\}$ (a subset of V).
 - (a) If $V = \mathbb{R}^2$ and $W = \mathcal{L}\{(1,1)\}$, geometrically describe all possible sets v + W.
 - (b) Show that if $v \in W$, then v + W = W. [From here on, V is an arbitrary vector space.]
 - (c) Show that if $v \notin W$, then $(v + W) \cap W = \emptyset$.
 - (d) For what vectors v is v + W a subspace of V?
 - (e) Prove that $v_1 + W = v_2 + W$ if and only if $v_1 v_2 \in W$.
 - (f) Addition and scalar multiplication may be defined as follows:

 $(v_1 + W) + (v_2 + W) = (v_1 + v_2) + W$ and a(v + W) = (av) + W.

Prove that these operations are well-defined; that is, show that if $v_1+W = v'_1+W$ and $v_2+W = v'_2+W$, then

$$(v_1 + W) + (v_2 + W) = (v'_1 + W) + (v'_2 + W)$$
 and $a(v_1 + W) = a(v'_1 + W).$

(g) Parts (e) and (f) show that we can put an addition and scalar multiplication on the quotient space V/W, where the elements of V/W are the sets v + W (each one may have multiple representations $v_1 + W, v_2 + W$, etc., but we have shown it does not alter the result of addition and multiplication to choose a different representation).

In fact, V/W is a vector space. What is its additive identity (zero vector)?

(10) Suppose that with respect to the basis $\{(1,0,1), (0,1,0), (1,0,-1)\}$ the transformation T has the following matrix.

- (a) What is the matrix for T with respect to the standard basis?
- (b) What is the hundredth power of the matrix from part (a)?
- (11) If \mathbf{X}, \mathbf{Y} are eigenvectors for the linear transformation T, is $\mathbf{X} + \mathbf{Y}$ an eigenvector for T?
- (12) Consider the linear transformation $T : \mathbb{R}^5 \to \mathcal{P}_2(\mathbb{R})$ given by $T(a_1, a_2, a_3, a_4, a_5) = (a_1 + a_2)x^2 (a_4 + a_5)x + a_2 a_3.$
 - (a) What are the image and kernel of T?
 - (b) Find an orthonormal basis for the kernel of T, with respect to the standard scalar product on \mathbb{R}^5 .