Final Exam Practice Problems Math 24 Winter 2012

- (1) The Jordan product of two $n \times n$ matrices is defined as $A \otimes B = \frac{1}{2}(AB + BA)$, where the products inside the parentheses are standard matrix product. Is the set of all $n \times n$ matrices, with standard scalar multiplication and vector addition defined as a Jordan product, a vector space?
- (2) Let $V_1 = (1, 1, 1, 1)$, $V_2 = (1, -1, 1, -1)$, and $V_3 = (1, 1, -1, -1)$.
 - (a) Show that $\{V_1, V_2, V_3\}$ is an orthogonal set.
 - (b) Find a V_4 so that $\{V_1, V_2, V_3, V_4\}$ is an orthogonal basis for \mathbb{R}^4 .
 - (c) Turn your basis from (b) into an orthonormal basis.
- (3) For each matrix below: (a) Find the inverse or show it does not exist; (b) find the characteristic polynomial, all eigenvalues, and their associated eigenspaces, and (c) diagonalize the matrix if possible, giving a basis relative to which it has that diagonal form.

$\begin{bmatrix} 3 & 2 & -1 \end{bmatrix}$]	$\begin{bmatrix} -1 \end{bmatrix}$	0	1]	3	1	1]
-6 -1 -4	,	-3	4	1	,	1	3	1	.
$-6 \ 2 \ -10$		0	0	2		1	1	3	

Hint for third matrix: 5 is an eigenvalue. Though the first matrix has an unpleasant characteristic polynomial computation, it factors without too much difficulty.

- (4) For each pair of matrix properties below, there are three possible relationships: If you have x you must have y and vice-versa, if you have x you must have y but you may have y without x, or you can never have x and y simultaneously. Determine which one holds between each pair. Does your answer change if you consider only matrices that are neither the zero matrix nor the identity matrix?
 - (a) diagonal
 - (b) symmetric
 - (c) nilpotent
 - (d) idempotent
 - (e) invertible
- (5) Determine conditions on h and k such that the following system of linear equations has (i) infinitely many solutions, (ii) a unique solution, and (iii) no solutions.

$$\begin{array}{rcl} x+3y &=& k\\ 4x+hy &=& 8 \end{array}$$

- (6) Assuming A, B, C, X are all $n \times n$ matrices and the first three are invertible, solve AX + B = CA for X.
- (7) Suppose the 2×2 matrix A has eigenvalue 2, with eigenvector (1, 1), and eigenvalue -5, with eigenvector (-1, 1). Use change of basis to find A.

(8) The augmented matrix of a system of three linear equations in three unknowns has been row reduced to the following form. What are the solutions to the system, if any?

$$\left[\begin{array}{rrrrr} 1 & 5 & 2 & -1 \\ 0 & 2 & -4 & 8 \\ 0 & 0 & 2 & 0 \end{array}\right]$$

- (9) Let $P: V \to V$ be a projection, and let $\{A_1, \ldots, A_k\}$ be a basis for Im P. Suppose that this basis is extended to a basis for all of $V, \{A_1, \ldots, A_k, B_1, \ldots, B_\ell\}$.
 - (a) For each $i, 1 \leq i \leq \ell$, let $C_i = B_i P(B_i)$. Show that $\{A_1, \ldots, A_k, C_1, \ldots, C_\ell\}$ is a basis for V.
 - (b) Find the matrix for P with respect to the basis in part (a).
- (10) How many isometries are there from \mathbb{R} to \mathbb{R} , with the standard inner product?
- (11) In a three-dimensional vector space V, two bases are $\mathcal{M} = \{\boldsymbol{m}_1, \boldsymbol{m}_2, \boldsymbol{m}_3\}$ and $\mathcal{N} = \{\boldsymbol{n}_1, \boldsymbol{n}_2, \boldsymbol{n}_3\}$. Given the following relationships between \mathcal{M} and \mathcal{N} , find the changeof-basis matrices from \mathcal{M} to \mathcal{N} and from \mathcal{N} to \mathcal{M} .

$$m{m}_1 = 2m{n}_2 + m{n}_3 \ m{m}_2 = -m{n}_1 \ m{m}_3 = m{n}_1 - m{n}_3$$

- (12) Let V be a vector space and $S \subseteq V$ be a spanning set for V. Suppose $A \subseteq S$ is linearly independent, but $A \cup \{x\}$ is linearly dependent for all $x \in S A$. Prove A is a basis for V.
- (13) Determine whether the set $\{x^2 + 2x 1, 3x + 2, -x^2 x + 3\}$ is a basis for $\mathcal{P}_2(\mathbb{R})$.
- (14) Prove that if E_1 and E_2 are eigenspaces for $T: V \to V$, then either $E_1 = E_2$ or $E_1 \cap E_2 = \{\mathbf{0}\}.$