What do we know?

Since the first quiz. . . that is, essentially Chapter 8.
Linear transformation: function between vector spaces that respects vector addition and scalar multiplication. That is, $T: V \rightarrow W$ such that $\forall \boldsymbol{X}, \boldsymbol{Y} \in V, \forall r \in \mathbb{R}, T(\boldsymbol{X}+\boldsymbol{Y})=$ $T(\boldsymbol{X})+T(\boldsymbol{Y})$ and $T(r \boldsymbol{X})=r T(\boldsymbol{X})$.

Extends to any linear combination of vectors of V.
General examples: zero transformation maps all vectors of V to W 's zero vector; identity transformation, for $V=W$, takes every vector to itself.

For $E \subseteq V, T(E)$ is the set of all images of vectors in $E . T(\mathcal{L}(E))=\mathcal{L}(T(E))$; clearly this is a subspace of $W \operatorname{Im}(T)=T(V)$, the image of V under T, is an example of such a subspace.
$\operatorname{ker}(T)=\{\boldsymbol{X} \in V: T(\boldsymbol{X})=\mathbf{0}\}$, the kernel of T. It is a subspace of V.
For any $T: V \rightarrow W, \operatorname{dim}(\operatorname{ker}(T))+\operatorname{dim}(\operatorname{Im}(T))=\operatorname{dim}(V)$.
The collection of all linear transformations between V and $W, \mathcal{L}(V, W)$, is a vector space under standard function addition and scalar multiplication. It is a subspace of the vector space $\operatorname{Fun}(V, W)$, which treats V as a set and includes maps that are not linear.

The composition of two linear transformations is also a linear transformation.
Given images in W for a basis of V, we may construct $T: V \rightarrow W$ by linear extension: every $\boldsymbol{X} \in V$ will have the form $a_{1} \boldsymbol{E}_{1}+\cdots+a_{n} \boldsymbol{E}_{n}$ for the basis \boldsymbol{E}_{i}, so let $T(\boldsymbol{X})=$ $a_{1} T\left(\boldsymbol{E}_{1}\right)+\cdots+a_{n} T\left(\boldsymbol{E}_{n}\right)$.

Every linear transformation is determined by its action on any basis of V, and every possible set of images of basis vectors of V gives rise to a linear transformation.
T is injective if and only if its kernel is $\{\mathbf{0}\}$, which is if and only if the set of images under T of a basis of V is linearly independent in W.
T is surjective if and only if the set of images under T of a basis of V spans W.
If $\operatorname{dim}(V)<\operatorname{dim}(W), T$ cannot be surjective. If $\operatorname{dim}(V)>\operatorname{dim}(W), T$ cannot be injective. If $\operatorname{dim}(V)=\operatorname{dim}(W), T$ may be bijective or neither injective nor surjective, but not one without the other.

An isomorphism is a linear transformation that has an inverse: $T: V \rightarrow W$ such that there is $S: W \rightarrow V$ with $S \circ T$ and $T \circ S$ the identity transformations on V and W, respectively.
$T: V \rightarrow W$ is an isomorphism if and only if it is a bijection, which is if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$ and T is either injective or surjective.

If $\operatorname{dim}(V)=\operatorname{dim}(W)$, there exists an isomorphism between V and W.

