What do we know?

Axioms for a vector space
Examples: $\mathbb{R}^{n}, \mathcal{P}_{n}(\mathbb{R}), \mathcal{P}(\mathbb{R})$, Mat ${ }_{n, m}, \mathbb{C}$, functions of various kinds
Linear combinations: vectors put together with addition and scalar multiplication $\mathcal{L}(E)=$ span of $E \subseteq V=$ set of all possible linear combinations of vectors in E $\mathcal{L}(\emptyset)=\{\mathbf{0}\}$
Subspaces: subsets that are vector spaces. $\mathcal{L}(E)$ for $E \subseteq V$.
Can show axioms hold or show the set is nonempty and closed under + and \cdot
$E \subseteq F \rightarrow \mathcal{L}(E) \subseteq \mathcal{L}(F)$
$\mathcal{L}(E) \cap \mathcal{L}(F)$ always subspace
$\mathcal{L}(E) \cup \mathcal{L}(F)$ only subspace if it equals $\mathcal{L}(E)$ or $\mathcal{L}(F)$
need $\mathcal{L}(E)+\mathcal{L}(F)=\mathcal{L}(E \cup F)=$ sums of elements from $\mathcal{L}(E)$ and $\mathcal{L}(F)$
linear dependence for E : nontrivial linear combination from E gives $\mathbf{0}$
equivalently one vector from E obtained as a linear combination of the rest.
equivalently one vector from E obtained as a lin. comb. of the previous vectors.
$\operatorname{dim}(V)=$ size of basis for V
If $E \subseteq V$ is linearly independent, $F \subseteq V$ is spanning, then $|E| \leq \operatorname{dim}(V) \leq|F|$
There is a basis $\supseteq E$ (add vectors outside the span, one by one)
There is a basis $\subseteq F$ (remove redundant vectors, one by one)
If $G \subseteq V$ has size $\operatorname{dim}(V)$, then G is linearly independent iff $\mathcal{L}(G)=V$ $\mathcal{L}(E)$ for $E \subseteq V$ has dimension $\leq \operatorname{dim}(V)$; if equal, $\mathcal{L}(E)=V$.

How to Prove

$A \subseteq B$: let $x \in A$ be arbitrary, show $x \in B$
$A=B$ (sets): $A \subseteq B$ and $B \subseteq A$
$P \rightarrow Q$: assume P, show Q based on that assumption
OR assume not- Q, show not- P based on that assumption (ie show $\neg Q \rightarrow \neg P$)
$P \leftrightarrow Q$: show $P \rightarrow Q$ and $Q \rightarrow P$

