Math 24
Winter 2010
Friday, January 29
(1.) TRUE or FALSE? In each part, V and W are finite-dimensional vector spaces with ordered bases α and β respectively, $T: V \rightarrow W$ is linear, and A and B denote matrices.
(a.) $\left([T]_{\alpha}^{\beta}\right)^{-1}=\left[T^{-1}\right]_{\alpha}^{\beta}$.
(b.) T is invertible if and only if T is one-to-one and onto.
(c.) $T=L_{A}$ where $A=[T]_{\alpha}^{\beta}$.
(d.) $M_{2 \times 3}(F)$ is isomorphic to F^{5}.
(e.) $P_{n}(F)$ is isomorphic to $P_{m}(F)$ if and only if $n=m$.
(f.) $A B=I$ implies that A and B are invertible.
(g.) If A is invertible, then $\left(A^{-1}\right)^{-1}=A$.
(h.) A is invertible if and only if L_{A} is invertible.
(i.) A must be square in order to possess an inverse.
(2.) For each linear transformation T, determine whether T is invertible and justify your answer.
(a.) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b)=(a-2 b, b, 3 a+4 b)$.
(b.) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b)=(3 a-2, b, 4 a)$.
(c.) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T(a, b, c)=(3 a-2 c, b, 3 a+4 b)$.
(d.) $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$.
(e.) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{3}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+2 b x+(c+d) x^{2}$.
(f.) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right)$.
(3.) Let $V=\left\{\left.\left(\begin{array}{cc}a & a+b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in F\right\}$. Construct an isomorphism from V to F^{3}.

There are three very important isomorphisms we have seen so far. We also know a few important facts about creating isomorphisms.
(a.) If V is any vector space, the identity transformation $I_{V}: V \rightarrow V$ is an isomorphism.
(b) If V is any n-dimensional vector space over F, and β is a basis for V, the "coordinate coding" function $\phi_{\beta}: V \rightarrow F^{n}$ defined by $\phi_{\beta}(v)=[v]_{\beta}$ is an isomorphism.
(c.) If V and W are n - and m - dimensional vector spaces over F with ordered bases α and β respectively, the "representation by matrix" function $\mathcal{R}: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$ defined by $\mathcal{R}(T)=[T]_{\alpha}^{\beta}$ is an isomorphism.
(d.) If V and W are n-dimensional vector spaces over $F, \alpha=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V, and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is a basis for W, then there is a unique isomorphism $T: V \rightarrow W$ such that $T\left(v_{1}\right)=w_{1}, T\left(v_{2}\right)=w_{2}, \ldots T\left(v_{n}\right)=w_{n}$.
(e.) If $T: V \rightarrow W$ and $U: W \rightarrow Z$ are isomorphisms, the composite (or composition) $U T: V \rightarrow Z$ is also an isomorphism.
(f.) If $T: V \rightarrow W$ is an isomorphism, then T is invertible, and its inverse $T^{-1}: W \rightarrow V$ is also an isomorphism.

Make sure you understand these things. They will be useful.
(4.) Let α be the standard ordered basis for \mathbb{R}^{2}, and β be the ordered basis $\{(1,2),(2,-1)\}$.
(a.) Compute $[(1,0)]_{\beta},[(0,1)]_{\beta},[(1,2)]_{\alpha}$, and $[(2,-1)]_{\alpha}$.
(b.) Let $\mathbb{I}=I_{\mathbb{R}^{2}}$ be the identity transformation on \mathbb{R}^{2} defined by $\mathbb{I}(v)=v$. Compute $[\mathbb{I}]_{\alpha}^{\beta}$ and $[\mathbb{I}]_{\beta}^{\alpha}$.
(c.) Because composition of linear transformations corresponds to multiplication of their matrices, we should have that $[\mathbb{I}]_{\alpha}^{\beta}[\mathbb{I}]_{\beta}^{\alpha}=[\mathbb{I}]_{\beta}^{\beta}=I$, where I is the 2×2 identity matrix. Check this by multiplying your matrices together.

Notice what these matrices are. The column vector $[v]_{\alpha}$ represents the coordinates of v in basis α, and the column vector $[\mathbb{I}]_{\alpha}^{\beta}[v]_{\alpha}=[\mathbb{I}(v)]_{\beta}=[v]_{\beta}$ represents the coordinates of v in basis β. If $v=(x, y)$, then $\binom{x}{y}$ gives the coordinates of v in the standard basis α, and the matrix product $[\mathbb{I}]_{\alpha}^{\beta}\binom{x}{y}=\binom{s}{t}$ gives the coordinates of v in the new basis β (which means that $v=s(1,2)+t(2,-1))$. In other words, multiplying by the matrix $[\mathbb{I}]_{\alpha}^{\beta}$ changes from standard coordinates to β-coordinates, and multiplying by the matrix $[\mathbb{I}]_{\beta}^{\alpha}$ changes from β-coordinates back to standard coordinates.
(d.) Notice that the vectors of β are perpendicular to each other. If the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is perpendicular projection onto the line through the origin in the direction of the vector $(1,2)$, we can express T by the formula $T(s(1,2)+t(2,-1))=s(1,2)$. Find the matrix $[T]_{\alpha}$ (that is, $[T]_{\alpha}^{\alpha}$) that represents T in the standard basis.

Hint: We can think of T as the three-step composition $\mathbb{I} T \mathbb{I}$ where \mathbb{I} is the identity transformation on \mathbb{R}^{2}. You already found $[\mathbb{I}]_{\alpha}^{\beta}$ and $[\mathbb{I}]_{\beta}^{\alpha}$, and it's easy to write down $[T]_{\beta}$.
(5.) Let $\alpha=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V, let $\beta=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be a basis for V, and for any $i \leq n$ and $j \leq m$ define a linear transformation $T_{i j}: V \rightarrow W$ by

$$
T_{i j}\left(v_{k}\right)= \begin{cases}w_{j} & \text { if } k=i ; \\ 0 & \text { if } k \neq i\end{cases}
$$

Show that $\left\{T_{i j} \mid i \leq n\right.$ and $\left.j \leq m\right\}$ is a basis for $\mathcal{L}(V, W)$. (Hint: Show the isomorphism $\mathcal{R}: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$ defined by $\mathcal{R}(T)=[T]_{\alpha}^{\beta}$ takes this set to a basis for $M_{m \times n}(F)$.)

