Math 24 Winter 2010 Friday, January 29

(1.) TRUE or FALSE? In each part, V and W are finite-dimensional vector spaces with ordered bases α and β respectively, $T: V \to W$ is linear, and A and B denote matrices.

(a.) $([T]^{\beta}_{\alpha})^{-1} = [T^{-1}]^{\beta}_{\alpha}.$

- (b.) T is invertible if and only if T is one-to-one and onto.
- (c.) $T = L_A$ where $A = [T]^{\beta}_{\alpha}$.
- (d.) $M_{2\times 3}(F)$ is isomorphic to F^5 .
- (e.) $P_n(F)$ is isomorphic to $P_m(F)$ if and only if n = m.
- (f.) AB = I implies that A and B are invertible.
- (g.) If A is invertible, then $(A^{-1})^{-1} = A$.

(h.) A is invertible if and only if L_A is invertible.

(i.) A must be square in order to possess an inverse.

(2.) For each linear transformation T, determine whether T is invertible and justify your answer.

(a.)
$$T : \mathbb{R}^2 \to \mathbb{R}^3$$
 defined by $T(a, b) = (a - 2b, b, 3a + 4b)$.

- (b.) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by T(a, b) = (3a 2, b, 4a).
- (c.) $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(a, b, c) = (3a 2c, b, 3a + 4b).
- (d.) $T: P_3(\mathbb{R}) \to P_2(\mathbb{R})$ defined by T(p(x)) = p'(x).

(e.)
$$T: M_{2\times 2}(\mathbb{R}) \to P_3(\mathbb{R})$$
 defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^2$.

(f.)
$$T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$$
 defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b & a \\ c & c+d \end{pmatrix}$.

(3.) Let
$$V = \left\{ \begin{pmatrix} a & a+b\\ 0 & c \end{pmatrix} \middle| a, b, c \in F \right\}$$
. Construct an isomorphism from V to F^3 .

There are three very important isomorphisms we have seen so far. We also know a few important facts about creating isomorphisms.

(a.) If V is any vector space, the identity transformation $I_V: V \to V$ is an isomorphism.

(b) If V is any n-dimensional vector space over F, and β is a basis for V, the "coordinate coding" function $\phi_{\beta}: V \to F^n$ defined by $\phi_{\beta}(v) = [v]_{\beta}$ is an isomorphism.

(c.) If V and W are n- and m- dimensional vector spaces over F with ordered bases α and β respectively, the "representation by matrix" function $\mathcal{R} : \mathcal{L}(V, W) \to M_{m \times n}(F)$ defined by $\mathcal{R}(T) = [T]^{\beta}_{\alpha}$ is an isomorphism.

(d.) If V and W are n-dimensional vector spaces over F, $\alpha = \{v_1, v_2, \ldots, v_n\}$ is a basis for V, and $\{w_1, w_2, \ldots, w_n\}$ is a basis for W, then there is a unique isomorphism $T: V \to W$ such that $T(v_1) = w_1, T(v_2) = w_2, \ldots, T(v_n) = w_n$.

(e.) If $T: V \to W$ and $U: W \to Z$ are isomorphisms, the composite (or composition) $UT: V \to Z$ is also an isomorphism.

(f.) If $T: V \to W$ is an isomorphism, then T is invertible, and its inverse $T^{-1}: W \to V$ is also an isomorphism.

Make sure you understand these things. They will be useful.

- (4.) Let α be the standard ordered basis for \mathbb{R}^2 , and β be the ordered basis $\{(1,2), (2,-1)\}$.
- (a.) Compute $[(1,0)]_{\beta}$, $[(0,1)]_{\beta}$, $[(1,2)]_{\alpha}$, and $[(2,-1)]_{\alpha}$.

(b.) Let $\mathbb{I} = I_{\mathbb{R}^2}$ be the identity transformation on \mathbb{R}^2 defined by $\mathbb{I}(v) = v$. Compute $[\mathbb{I}]^{\beta}_{\alpha}$ and $[\mathbb{I}]^{\alpha}_{\beta}$.

(c.) Because composition of linear transformations corresponds to multiplication of their matrices, we should have that $[\mathbb{I}]^{\beta}_{\alpha}[\mathbb{I}]^{\alpha}_{\beta} = [\mathbb{I}]^{\beta}_{\beta} = I$, where I is the 2 × 2 identity matrix. Check this by multiplying your matrices together.

Notice what these matrices are. The column vector $[v]_{\alpha}$ represents the coordinates of v in basis α , and the column vector $[\mathbb{I}]_{\alpha}^{\beta}[v]_{\alpha} = [\mathbb{I}(v)]_{\beta} = [v]_{\beta}$ represents the coordinates of v in basis β . If v = (x, y), then $\begin{pmatrix} x \\ y \end{pmatrix}$ gives the coordinates of v in the standard basis α , and the matrix product $[\mathbb{I}]_{\alpha}^{\beta}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} s \\ t \end{pmatrix}$ gives the coordinates of v in the new basis β (which means that v = s(1, 2) + t(2, -1)). In other words, multiplying by the matrix $[\mathbb{I}]_{\beta}^{\alpha}$ changes from standard coordinates to β -coordinates, and multiplying by the matrix $[\mathbb{I}]_{\beta}^{\alpha}$ changes from β -coordinates back to standard coordinates.

(d.) Notice that the vectors of β are perpendicular to each other. If the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ is perpendicular projection onto the line through the origin in the direction of the vector (1, 2), we can express T by the formula T(s(1, 2) + t(2, -1)) = s(1, 2). Find the matrix $[T]_{\alpha}$ (that is, $[T]^{\alpha}_{\alpha}$) that represents T in the standard basis.

Hint: We can think of T as the three-step composition $\mathbb{I}T\mathbb{I}$ where \mathbb{I} is the identity transformation on \mathbb{R}^2 . You already found $[\mathbb{I}]^{\beta}_{\alpha}$ and $[\mathbb{I}]^{\alpha}_{\beta}$, and it's easy to write down $[T]_{\beta}$.

(5.) Let $\alpha = \{v_1, v_2, \dots, v_n\}$ be a basis for V, let $\beta = \{w_1, w_2, \dots, w_m\}$ be a basis for V, and for any $i \leq n$ and $j \leq m$ define a linear transformation $T_{ij} : V \to W$ by

$$T_{ij}(v_k) = \begin{cases} w_j & \text{if } k = i; \\ 0 & \text{if } k \neq i. \end{cases}$$

Show that $\{T_{ij} \mid i \leq n \text{ and } j \leq m\}$ is a basis for $\mathcal{L}(V, W)$. (Hint: Show the isomorphism $\mathcal{R} : \mathcal{L}(V, W) \to M_{m \times n}(F)$ defined by $\mathcal{R}(T) = [T]^{\beta}_{\alpha}$ takes this set to a basis for $M_{m \times n}(F)$.)