Linear Transformations and Matrices

January 29, 2007

Linear Transformations

- Let V and W be vector spaces over a field F.
- Let $T: V \rightarrow W$ be a function.
- We say that T is a linear transformation from V to W if, for all $x, y \in V$ and $c \in F$, we have

1. $T(x+y)=T(x)+T(y)$.
2. $T(c x)=c T(x)$.

Example

- Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T\binom{x}{y}=\left(\begin{array}{ll}
2 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Properties

- If T is linear, then $T(0)=0$.

Properties

- If T is linear, then $T(0)=0$.
- Important: T is linear if and only if $T(c x+y)=c T(x)+T(y)$ for all $x, y \in V, c \in F$.

Properties

- If T is linear, then $T(0)=0$.
- Important: T is linear if and only if $T(c x+y)=c T(x)+T(y)$ for all $x, y \in V, c \in F$.
- If T is linear, then $T(x-y)=T(x)-T(y)$.

Properties

- If T is linear, then $T(0)=0$.
- Important: T is linear if and only if $T(c x+y)=c T(x)+T(y)$ for all $x, y \in V, c \in F$.
- If T is linear, then $T(x-y)=T(x)-T(y)$.
- T is linear if and only if, for $x_{1}, x_{2}, \ldots, x_{n} \in V$ and $a_{1}, a_{2}, \ldots, a_{n} \in F$, we have

$$
T\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=\sum_{i=1}^{n} a_{i} T\left(x_{i}\right) .
$$

- If $T: V \rightarrow W, S: V \rightarrow W$ are linear, then $T+S$ is linear.
- If V, W, and Z are vector spaces, $T: V \rightarrow W, S: W \rightarrow Z$ are linear, then so is $S \circ T$.

More Examples

- Let $V=\mathbb{R}^{2}, \theta \in \mathbb{R}$, and let $T: V \rightarrow V$ be defined by

$$
T\binom{x}{y}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y} .
$$

(rotation by the angle θ).

- Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be

$$
T\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}
$$

(the reflection about the x-axis).

- Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be

$$
T\binom{x}{y}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{x}{y}
$$

(the reflection about the x-axis).

- Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be

$$
T\binom{x}{y}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{x}{y} .
$$

(the projection on the x-axis).

- Let $T: M_{m \times n}(F) \rightarrow M_{m \times n}(F)$ be defined by $T(A)=A^{t}$.
- Let $T: M_{m \times n}(F) \rightarrow M_{m \times n}(F)$ be defined by $T(A)=A^{t}$.
- Let $V=C(\mathbb{R}), a, b \in \mathbb{R}$, and define $T: V \rightarrow V$ be

$$
T(f)=\int_{a}^{b} f(x) \mathrm{d} x .
$$

- Let $T: M_{m \times n}(F) \rightarrow M_{m \times n}(F)$ be defined by $T(A)=A^{t}$.
- Let $V=C(\mathbb{R}), a, b \in \mathbb{R}$, and define $T: V \rightarrow V$ be

$$
T(f)=\int_{a}^{b} f(x) \mathrm{d} x .
$$

- The linear transformation $1_{V}: V \rightarrow V$ defined by $1_{V}(x)=x$ is called the identity transformation.
- The linear transformation $T_{0}: V \rightarrow W$ defined by $T_{0}(x)=0$ for all x in V is called the zero transformation.

The Null Space and the Range of a Linear Transformation

- Let $T: V \rightarrow W$ be a linear transformation.
- The null space (or kernel) $N(T)$ of T is the set of all vectors x in V such that $T(x)=0$.

The Null Space and the Range of a Linear Transformation

- Let $T: V \rightarrow W$ be a linear transformation.
- The null space (or kernel) $N(T)$ of T is the set of all vectors x in V such that $T(x)=0$.
- The range (or image) $R(T)$ of T is the subset of W consisting of all images (under T) of vectors in V.

Theorem. Let V and W be vector spaces and $T: V \rightarrow W$ be linear. Then $N(T)$ and $R(T)$ are subspaces of V and W, respectively.

