Basis and Dimension (cont'd)

January 24, 2007

Direct Sum

- If S_{1} and S_{2} are nonempty subsets of a vector space V, then the sum of S_{1} and S_{2}, denoted $S_{1}+S_{2}$, is the set $\{x+y: x \in$ S_{1} and $\left.x \in S_{2}\right\}$.

Direct Sum

- If S_{1} and S_{2} are nonempty subsets of a vector space V, then the sum of S_{1} and S_{2}, denoted $S_{1}+S_{2}$, is the set $\{x+y: x \in$ S_{1} and $\left.x \in S_{2}\right\}$.
- A vector space V is called the direct sum of W_{1} and W_{2} if W_{1} and W_{2} are subspaces of V such that $W_{1} \bigcap W_{2}=\{0\}$ and $W_{1}+W_{2}=V$.
- We denote that V is the direct sum of W_{1} and W_{2} by writing $V=W_{1} \oplus W_{2}$.

Finite-dimensional Vector Spaces

- A vector space is called finite-dimensional if it has a basis consisting of a finite number of vectors.
- The unique number of vectors in each basis for V is called the dimension of V and is denoted by $\operatorname{dim}(V)$.
- A vector space that is not finite-dimensional is called infinitedimensional.

Theorem. [Replacement Theorem] Let Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly $n-m$ vectors such that $L \bigcup H$ generates V.

Corollary. Let V be a vector space with dimension n.

1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.
3. Every linearly independent subset of V can be extended to a basis for V.

The Dimension of Subspaces

Theorem. Let W be a subspace of a finite-dimensional vector space V. The W is finite-dimensional and $\operatorname{dim}(W) \leq \operatorname{dim}(V)$. Moreover, if $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $V=W$.

Corollary. If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.

