Basis and Dimension (cont'd)

January 24, 2007

Lecture 8

Direct Sum

• If S_1 and S_2 are nonempty subsets of a vector space V, then the sum of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } x \in S_2\}$.

Direct Sum

- If S_1 and S_2 are nonempty subsets of a vector space V, then the sum of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } x \in S_2\}$.
- A vector space V is called the direct sum of W₁ and W₂ if W₁ and W₂ are subspaces of V such that W₁ ∩ W₂ = {0} and W₁ + W₂ = V.
- We denote that V is the direct sum of W_1 and W_2 by writing $V = W_1 \oplus W_2$.

Finite-dimensional Vector Spaces

- A vector space is called **finite-dimensional** if it has a basis consisting of a finite number of vectors.
- The unique number of vectors in each basis for V is called the **dimension** of V and is denoted by $\dim(V)$.
- A vector space that is not finite-dimensional is called **infinite**-**dimensional**.

Theorem. [Replacement Theorem] Let Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n - m vectors such that $L \bigcup H$ generates V.

Corollary. Let V be a vector space with dimension n.

- 1. Any finite generating set for V contains at least n vectors, and a generating set for V that contains exactly n vectors is a basis for V.
- 2. Any linearly independent subset of V that contains exactly n vectors is a basis for V.
- 3. Every linearly independent subset of V can be extended to a basis for V.

The Dimension of Subspaces

Theorem. Let W be a subspace of a finite-dimensional vector space V. The W is finite-dimensional and $\dim(W) \leq \dim(V)$. Moreover, if $\dim(W) = \dim(V)$, then V = W.

Corollary. If W is a subspace of a finite-dimensional vector space V, then any basis for W can be extended to a basis for V.