Basis and Dimension (cont'd)

January 22, 2007

Lecture 7

Bases and Dimension

 A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a bass for V, we also say that the vectors of β form a basis for V. **Theorem.** Let V be a vector space and $\beta = \{u_1, u_2, \dots, u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , that is, can be expressed in the form

 $v = a_1u_1 + a_2u_2 + \dots + a_nu_n$

for unique scalars a_1, a_2, \ldots, a_n .

Theorem. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem. [Replacement Theorem] Let Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n - m vectors such that $L \bigcup H$ generates V.

Theorem. [Replacement Theorem] Let Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n - m vectors such that $L \bigcup H$ generates V.

Corollary. Let V be a vector space having a finite basis. Then every basis for V contains the same number of vectors.

Finite-dimensional Vector Spaces

- A vector space is called **finite-dimensional** if it has a basis consisting of a finite number of vectors.
- The unique number of vectors in each basis for V is called the **dimension** of V and is denoted by $\dim(V)$.
- A vector space that is not finite-dimensional is called **infinite-dimensional**.