Linear Dependence and Linear Independence (cont'd)

January 19, 2007

Linear Dependence and Linear Independence

- A subset S of a vector space V is called linearly dependent if there exist a finite number of distinct vectors $u_{1}, u_{2}, \ldots, u_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, such that

$$
a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=0 .
$$

In this case we say that the vectors of S are linearly dependent.

- A subset S of V that is not linearly dependent is called linearly independent. We say that the vectors of S are linearly independent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{1} is linearly dependent, then S_{2} is linearly dependent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{1} is linearly dependent, then S_{2} is linearly dependent.

Theorem. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{2} is linearly independent, then S_{1} is linearly independent.

Theorem. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \bigcup\{v\}$ is linearly dependent if and only if $v \in \operatorname{span}(S)$.

Bases and Dimension

- A basis β for a vector space V is a linearly independent subset of V that generates V. If β is a bass for V, we also say that the vectors of β form a basis for V.

Theorem. Let V be a vector space and $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β, that is, can be expressed in the form

$$
v=a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}
$$

for unique scalars $a_{1}, a_{2}, \ldots, a_{n}$.

Theorem. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem. [Replacement Theorem] Let Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly $n-m$ vectors such that $L \bigcup H$ generates V.

