Linear Dependence and Linear Independence (cont'd)

January 19, 2007

Linear Dependence and Linear Independence

• A subset S of a vector space V is called **linearly dependent** if there exist a finite number of distinct vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1u_1 + a_2u_2 + \ldots + a_nu_n = 0.$$

In this case we say that the vectors of S are linearly dependent.

ullet A subset S of V that is not linearly dependent is called **linearly independent**. We say that the vectors of S are linearly independent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Theorem. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_2 is linearly independent, then S_1 is linearly independent.

Theorem. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \cup \{v\}$ is linearly dependent if and only if $v \in \text{span}(S)$.

Bases and Dimension

• A **basis** β for a vector space V is a linearly independent subset of V that generates V. If β is a bass for V, we also say that the vectors of β form a basis for V.

Theorem. Let V be a vector space and $\beta = \{u_1, u_2, \dots, u_n\}$ be a subset of V. Then β is a basis for V if and only if each $v \in V$ can be uniquely expressed as a linear combination of vectors of β , that is, can be expressed in the form

$$v = a_1 u_1 + a_2 u_2 + \dots + a_n u_n$$

for unique scalars a_1, a_2, \ldots, a_n .

Theorem. If a vector space V is generated by a finite set S, then some subset of S is a basis for V. Hence V has a finite basis.

Theorem. [Replacement Theorem] Let Let V be a vector space that is generated by a set G containing exactly n vectors, and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a subset H of G containing exactly n-m vectors such that $L \bigcup H$ generates V.