Linear Combinations (cont'd)

January 18, 2007

Lecture 5

Theorem. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain span(S).

• A subset S of a vector space V generates (or spans) V is span(S) = V. In this case we say that the vectors of S generate (or span) V.

Linear Dependence and Linear Independence

• A subset S of a vector space V is called **linearly dependent** if there exist a finite number of distinct vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1u_1 + a_2u_2 + \ldots + a_nu_n = 0.$$

In this case we say that the vectors of S are linearly dependent.

Linear Dependence and Linear Independence

• A subset S of a vector space V is called **linearly dependent** if there exist a finite number of distinct vectors u_1, u_2, \ldots, u_n in S and scalars a_1, a_2, \ldots, a_n , not all zero, such that

$$a_1u_1 + a_2u_2 + \ldots + a_nu_n = 0.$$

In this case we say that the vectors of S are linearly dependent.

• A subset S of V that is not linearly dependent is called **linearly dependent**. We say that the vectors of S are linearly independent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_1 is linearly dependent, then S_2 is linearly dependent.

Theorem. Let V be a vector space, and let $S_1 \subset S_2 \subset V$. If S_2 is linearly independent, then S_1 is linearly independent.

Theorem. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \bigcup \{v\}$ is linearly dependent if and only if $v \in \text{span}(S)$.