Linear Combinations (cont'd)

January 18, 2007

Theorem. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain span (S).

- A subset S of a vector space V generates (or spans) V is $\operatorname{span}(S)=V$. In this case we say that the vectors of S generate (or span) V.

Linear Dependence and Linear Independence

- A subset S of a vector space V is called linearly dependent if there exist a finite number of distinct vectors $u_{1}, u_{2}, \ldots, u_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, such that

$$
a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=0 .
$$

In this case we say that the vectors of S are linearly dependent.

Linear Dependence and Linear Independence

- A subset S of a vector space V is called linearly dependent if there exist a finite number of distinct vectors $u_{1}, u_{2}, \ldots, u_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$, not all zero, such that

$$
a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{n} u_{n}=0 .
$$

In this case we say that the vectors of S are linearly dependent.

- A subset S of V that is not linearly dependent is called linearly dependent. We say that the vectors of S are linearly independent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{1} is linearly dependent, then S_{2} is linearly dependent.

Results about linear dependence and linear independence

Theorem. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{1} is linearly dependent, then S_{2} is linearly dependent.

Theorem. Let V be a vector space, and let $S_{1} \subset S_{2} \subset V$. If S_{2} is linearly independent, then S_{1} is linearly independent.

Theorem. Let S be a linearly independent subset of a vector space V, and let v be a vector in V that is not in S. Then $S \bigcup\{v\}$ is linearly dependent if and only if $v \in \operatorname{span}(S)$.

