Systems of Linear Equations

January 17, 2006

Subspaces (cont'd)

Theorem. Any intersection of subspaces of a vector space V is a subspace of V.

Linear Combinations

- Let V be a vector space and S a nonempty subset of V. A vector v in V is called a linear combination of vectors of S if there exist a finite numbers of vectors $u_{1}, u_{2}, \ldots, u_{n}$ in S and scalars $a_{1}, a_{2}, \ldots, a_{n}$ in F such that

$$
v=a_{1} v_{1}+a_{2} v_{2}++a_{n} v_{n}
$$

- We say that v is a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{n}$.
- We call $a_{1}, a_{2}, \ldots, a_{n}$ the coefficients of the linear combination.
- Let S be a nonempty subset of a vector space V. The span of S, denoted $\operatorname{span}(S)$, is the set consisting of all linear combinations of the vectors in S. We define $\operatorname{span}(\emptyset)=\{0\}$.
- Let S be a nonempty subset of a vector space V. The span of S, denoted $\operatorname{span}(S)$, is the set consisting of all linear combinations of the vectors in S. We define $\operatorname{span}(\emptyset)=\{0\}$.

Theorem. The span of any subset S of a vector space V is a subspace of V. Moreover, any subspace of V that contains S must also contain span (S).

- A subset S of a vector space V generates (or spans) V is $\operatorname{span}(S)=V$. In this case we say that the vectors of S generate (or span) V.

