Subspaces

11/12/2007

Lecture 3

Properties of Scalar Multiplication

Theorem. In any vector space V, the following statements are true:

1. 0x = 0 for each $x \in V$.

2.
$$(-a)x = -(ax) = a(-x)$$
 for each a in F and each x in V .

3. a0 = 0 for each $a \in F$.

Subspaces

• A subset W of a vector space V over a field F is called a **subspace** of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V. **Theorem.** Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the operations defined in V.

1. $0 \in W$.

- 2. $x + y \in W$ whenever $x \in W$ and $y \in W$.
- 3. $cx \in W$ whenever $c \in F$ and $x \in W$.

Theorem. Any intersection of subspaces of a vector space V is a subspace of V.