Subspaces

11/12/2007

Lecture 3

Properties of Scalar Multiplication

Theorem. In any vector space V, the following statements are true:

1. $0 x=0$ for each $x \in V$.
2. $(-a) x=-(a x)=a(-x)$ for each a in F and each x in V.
3. $a 0=0$ for each $a \in F$.

Subspaces

- A subset W of a vector space V over a field F is called a subspace of V if W is a vector space over F with the operations of addition and scalar multiplication defined on V.

Theorem. Let V be a vector space and W a subset of V. Then W is a subspace of V if and only if the following three conditions hold for the operations defined in V.

1. $0 \in W$.
2. $x+y \in W$ whenever $x \in W$ and $y \in W$.
3. $c x \in W$ whenever $c \in F$ and $x \in W$.

Theorem. Any intersection of subspaces of a vector space V is a subspace of V.

