Inner Products and Norms

Lecture 24

March 5, 2007

Inner Product

Definition

Let V be a vector space over F. An inner product on V is a function that assigns to every ordered pair of vectors x and y in V, a scalar in F, denoted $\langle x, y\rangle$, such that for all x, y and z in V and all c in F, the following hold:
(1) $\langle x+z, y\rangle=\langle x, y\rangle+\langle z, y\rangle$.
(2) $\langle c x, y\rangle=c\langle x, y\rangle$.
(3) $\overline{\langle x, y\rangle}=\langle y, x\rangle$.
(1) $\langle x, x\rangle>0$ if $x \neq 0$.

Properties of the Inner Product

Theorem

Let V be an inner product space. Then for $x, y, z \in V$ and $c \in F$, the following statements are true:
(1) $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$.
(2) $\langle x, c y\rangle=\bar{c}\langle x, y\rangle$.
(3) $\langle x, 0\rangle=\langle 0, x\rangle=0$.
(9) $\langle x, x\rangle=0$ if and only if $x=0$.
(0) If $\langle x, y\rangle=\langle x, z\rangle$ for all $x \in V$, then $y=z$.

The Length of a Vector

Definition

Let V be an inner product space. For $x \in V$, we define the norm or length of x by

$$
\|x\|=\sqrt{\langle x, x\rangle} .
$$

Properties of the Norm

Theorem

Let V be an inner product space over F. Then for all $x, y \in V$ and $c \in F$, the following statements are true.
(1) $\|c x\|=|c| \cdot\|x\|$.
(2) $\|x\|=0$ if and only if $x=0$. In any case, $\|x\| \geq 0$.
(3) (Cauchy-Scwarz Inequality) $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
(9) (Triangle Inequality) $\|x+y\| \leq\|x\|+\|y\|$.

Orthogonal Vectors

Definition

Let V be an inner product space.
(1) Two vectors x and y in V are orthogonal if $\langle x, y\rangle=0$.
(2) A subset S of V is orthogonal if any two distinct vectors in S are orthogonal.
(3) A vector x in V is a unit vector if $\|x\|=1$.
(9) A subset S of V is orthonormal if S is orthogonal and consists entirely of unit vectors.
(3) A subset S of V is an orthonormal basis for V if it is an ordered basis that is orthonormal.

Orthogonal Sets

Theorem

Let V be an inner product space and $S=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal subset of V consisting on nonzero vectors. If $y \in \operatorname{span}(S)$, then

$$
y=\sum_{i=1}^{k} \frac{\left\langle y, v_{i}\right\rangle}{\left\|v_{i}\right\|^{2}} v_{i}
$$

Orthogonal Sets

Corollary

If S is an orthonormal set and $y \in \operatorname{span}(S)$, then

$$
y=\sum_{i=1}^{k}\left\langle y, v_{i}\right\rangle v_{i}
$$

Corollary

Let V be an inner product space, and let S be an orthogonal subset of V consisting of nonzero vectors. Then S is linearly independent.

