Diagonalizability

Lecture 23

March 2, 2007

Let T be a linear operator on a vector space V, and let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be distinct eigenvalues of T. If v_1, v_2, \ldots, v_k are eigenvectors of T such that λ_i corresponds to v_i $(1 \le i \le k)$, then $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

Corollary

Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Definition

A polynomial f(t) in P(F) splits over F if there are scalars c, a_1, \ldots, a_n (not necessarily distinct) in F such that

$$f(t) = c(t-a_1)(t-a_2)\dots(t-a_n).$$

The characteristic polynomial of any diagonalizable linear operator splits:

$$f(t) = (-1)^n (t - \lambda_1)(t - \lambda_2) \dots (t - \lambda_n).$$

Definition

Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial f(t). The algebraic multiplicity of λ is the largest positive integer k for which $(t - \lambda)^k$ is a factor of f(t).

Definition

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define

$$E_{\lambda} = N(T - \lambda I).$$

The set E_{λ} is called the **eigenspace** of *T* corresponding to the eigenvalue λ .

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \dim(E_{\lambda}) \leq m$.

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the distinct eigenvalues of T. Then

- T is diagonalizable if and only if the multiplicity of λ_i is equal to dim(E_{λi}) for all i.
- **2** If T is diagonalizable and β_i is an ordered basis for E_{λ_i} for each *i*, then $\beta = \beta_1 \bigcup \beta_2 \bigcup \ldots \beta_k$ is an ordered basis for V consisting of eigenvectors of T.