Diagonalizability

Lecture 23

March 2, 2007

Linearly Independent Eigenvectors

Theorem

Let T be a linear operator on a vector space V, and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be distinct eigenvalues of T. If $v_{1}, v_{2}, \ldots, v_{k}$ are eigenvectors of T such that λ_{i} corresponds to $v_{i}(1 \leq i \leq k)$, then $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is linearly independent.

n-Distinct Eigenvalues

Corollary
Let T be a linear operator on an n-dimensional vector space V. If T has n distinct eigenvalues, then T is diagonalizable.

Characteristic Polynomials Split

Definition

A polynomial $f(t)$ in $P(F)$ splits over F if there are scalars c, a_{1}, \ldots, a_{n} (not necessarily distinct) in F such that

$$
f(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \ldots\left(t-a_{n}\right)
$$

Characteristic Polynomials Split

Theorem

The characteristic polynomial of any diagonalizable linear operator splits:

$$
f(t)=(-1)^{n}\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \ldots\left(t-\lambda_{n}\right) .
$$

Algebraic Multiplicity

Definition

Let λ be an eigenvalue of a linear operator or matrix with characteristic polynomial $f(t)$. The algebraic multiplicity of λ is the largest positive integer k for which $(t-\lambda)^{k}$ is a factor of $f(t)$.

Eigenspace

Definition

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. Define

$$
E_{\lambda}=N(T-\lambda I) .
$$

The set E_{λ} is called the eigenspace of T corresponding to the eigenvalue λ.

The Dimension of the Eigenspace

Theorem

Let T be a linear operator on a finite-dimensional vector space V, and let λ be an eigenvalue of T having multiplicity m. Then $1 \leq \operatorname{dim}\left(E_{\lambda}\right) \leq m$.

When is T diagonalizable

Theorem

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. Then

When is T diagonalizable

Theorem

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. Then
(1) T is diagonalizable if and only if the multiplicity of λ_{i} is equal to $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ for all i.

When is T diagonalizable

Theorem

Let T be a linear operator on a finite-dimensional vector space V such that the characteristic polynomial of T splits. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the distinct eigenvalues of T. Then
(1) T is diagonalizable if and only if the multiplicity of λ_{i} is equal to $\operatorname{dim}\left(E_{\lambda_{i}}\right)$ for all i.
(2) If T is diagonalizable and β_{i} is an ordered basis for $E_{\lambda_{i}}$ for each i, then $\beta=\beta_{1} \bigcup \beta_{2} \bigcup \ldots \beta_{k}$ is an ordered basis for V consisting of eigenvectors of T.

