Eigenvalues and Eigenvectors

Lecture 22

February 28, 2007

Diagonalizable Linear Operators

Definitions

Diagonalizable Linear Operators

Definitions

- A linear operator on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.

Diagonalizable Linear Operators

Definitions

- A linear operator on a finite-dimensional vector space V is called diagonalizable if there is an ordered basis β for V such that $[T]_{\beta}$ is a diagonal matrix.
- A square matrix A is called diagonalizable if L_{A} is diagonalizable.

Eigenvalues and Eigenvectors

Definitions

Eigenvalues and Eigenvectors

Definitions

- Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v)=\lambda v$.

Eigenvalues and Eigenvectors

Definitions

- Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v)=\lambda v$.
- The scalar λ is called the eigenvalue corresponding to the eigenvector v.

Eigenvalues and Eigenvectors

Definitions

- Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v)=\lambda v$.
- The scalar λ is called the eigenvalue corresponding to the eigenvector v.
- Let A be a square matrix. A nonzero vector $v \in F^{n}$ is called an eigenvector of A if v is an eigenvector of $L_{A}: A v=\lambda v$.

Eigenvalues and Eigenvectors

Definitions

- Let T be a linear operator on a vector space V. A nonzero vector $v \in V$ is called an eigenvector of T if there exists a scalar λ such that $T(v)=\lambda v$.
- The scalar λ is called the eigenvalue corresponding to the eigenvector v.
- Let A be a square matrix. A nonzero vector $v \in F^{n}$ is called an eigenvector of A if v is an eigenvector of $L_{A}: A v=\lambda v$.
- The scalar λ is called the eigenvalue of A corresponding to the eigenvector v.

Theorem

A linear operator T on a finite-dimensional vector space V is diagonalizable if and only if there exists an ordered basis β for V consisting of eigenvectors of T. Furthermore, if T is diagonalizable, $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an ordered basis of eigenvectors of T, and $D=[T]_{\beta}$, then D is a diagonal matrix and $D_{j j}$ is the eigenvalue corresponding to v_{j} for $1 \leq j \leq n$.

Diagonalization

Definition

To diagonalize a matrix or a linear operator is to find a basis of eigenvectors and the corresponding eigenvalues.

How to Determine Eigenvalues?

Theorem
 Let $A \in M_{n \times n}(F)$. Then a scalar λ is an eigenvalue of A if and only if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.

The Characteristic Polynomial

Definition

The Characteristic Polynomial

Definition

- Let $A \in M_{n \times n}(F)$. The polynomial $f(t)=\operatorname{det}\left(A-t I_{n}\right)$ is called the characteristic polynomial of A.

The Characteristic Polynomial

Definition

- Let $A \in M_{n \times n}(F)$. The polynomial $f(t)=\operatorname{det}\left(A-t t_{n}\right)$ is called the characteristic polynomial of A.
- Let T be a linear operator on an n-dimensional vector space V with ordered basis β. The characteristic polynomial $f(t)$ of T to be the characteristic polynomial of $A=[T]_{\beta}$.

The Characteristic Polynomial

Theorem
 Let $A \in M_{n \times n}(F)$.

The Characteristic Polynomial

Theorem

Let $A \in M_{n \times n}(F)$.

- The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^{n}$.

The Characteristic Polynomial

Theorem

Let $A \in M_{n \times n}(F)$.

- The characteristic polynomial of A is a polynomial of degree n with leading coefficient $(-1)^{n}$.
- A has at most n distinct eigenvalues.

How to Determine Eigenvectors?

Theorem

Let T be a linear operator on a vector space V, and let λ be an eigenvalue of T. A vector $v \in V$ is an eigenvector of T corresponding to λ if and only if $v \neq 0$ and $v \in N(T-\lambda I)$.

