Determinants

Lecture 21

February 26, 2007

Determinants of order 2

Definition

If

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is a 2×2 matrix with entries from a field F, then the determinant of A, denoted $\operatorname{det}(A)$ or $|A|$, to be

$$
|A|=a d-b c
$$

Properties of the Determinants

Theorem

The function det: $M_{2 \times 2}(F) \rightarrow F$ is a linear function of each row of a 2×2 matrix when the other row is fixed. That is

$$
\operatorname{det}\binom{u+k v}{w}=\operatorname{det}\binom{u}{w}+k \operatorname{det}\binom{v}{w}
$$

and

$$
\operatorname{det}\binom{w}{u+k v}=\operatorname{det}\binom{w}{u}+k \operatorname{det}\binom{w}{u}
$$

Properties of the Determinants

Theorem

Suppose A is a 2×2 matrix. Then the determinant of A is nonzero if and only if A is invertible. Moreover, if A is invertible, then

$$
A^{-1}=\frac{1}{|A|}\left(\begin{array}{cc}
d & -c \\
-b & a
\end{array}\right) .
$$

Determinants and Geometry (part 1)

Definition

Let $\beta=\{u, v\}$ be an ordered basis for \mathbb{R}^{2}. The orientation of β is

$$
O\binom{u}{v}=\frac{\operatorname{det}\binom{u}{v}}{\left|\operatorname{det}\binom{u}{v}\right|}
$$

Note that a coordinate system $\{u, v\}$ is right handed if and only if $O\binom{u}{v}=1$.

Determinants of order 3 and higher

Definition

Suppose that A is a 3×3 matrix. Then the determinant of A is defined to be:

$$
|A|=\left|A_{11}\right|-\left|A_{12}\right|+\left|A_{13}\right| .
$$

This formula is called the cofactor expansion along the first row of A.

Determinants and Geometry (part 2)

Fact

Recall

- The inner product between two vectors (a, b, c) and (c, d, e) in \mathbb{R}^{3} is equal to the determinant

$$
\left|\left(\begin{array}{lll}
i & j & k \\
a & b & c \\
d & e & f
\end{array}\right)\right|
$$

- The area of the parallelogram determined by two vectors is given by the absolute value of the inner product between vectors.

Properties of the Determinants

Theorem

If an $n \times n$ matrix A has a row consisting entirely of zeros, then $|A|=0$.

Properties of the Determinants

Theorem
If an $n \times n$ matrix A has two identical rows, then $|A|=0$.

Properties of the Determinants

Theorem
If an $n \times n$ matrix A has rank less than n, then $|A|=0$.

Fact

- If B is a matrix obtained by interchanging any two rows of A, then $|B|=-|A|$.
- If B is a matrix obtained by multiplying a row of A by a nonzero scalar k, then $|B|=k|A|$.
- If B is a matrix obtained by adding a multiple of one row of A to another row of A, then $|B|=|A|$.

