Systems of Linear Equations Computational Aspects – Gauss Elimination

Lecture 20

February 23. 2007

Lecture 20 Systems of Linear Equations

Two systems of linear equations are called equivalent if they have the same solution set.

Theorem

Let Ax = b be a system of m linear equations in n unknowns, and let C be an invertible $m \times m$ matrix. Then the system (CA)x = Cbis equivalent to Ax = b.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Theorem

Let Ax = b be a system of m linear equations in n unknowns, and let C be an invertible $m \times m$ matrix. Then the system (CA)x = Cbis equivalent to Ax = b.

Corollary

Let Ax = b be a system of m linear equations in n unknowns. If (A'|b') is obtained from (A|b) by a finite number of elementary row operations, then the system A'x = b' is equivalent to the original system.

・ロト ・日子・ ・ ヨト・

A matrix is said to be in **reduced row echelon form** if the following three conditions are satisfied:

・ロト ・日下 ・ 日下

A matrix is said to be in **reduced row echelon form** if the following three conditions are satisfied:

 Any rows containing a nonzero entry orecedes any row in which all the entries are zero (if any).

A matrix is said to be in **reduced row echelon form** if the following three conditions are satisfied:

- Any rows containing a nonzero entry orecedes any row in which all the entries are zero (if any).
- The first nonzero entry in each row is the only nonzero entry in its column.

A matrix is said to be in **reduced row echelon form** if the following three conditions are satisfied:

- Any rows containing a nonzero entry orecedes any row in which all the entries are zero (if any).
- The first nonzero entry in each row is the only nonzero entry in its column.
- The first nonzero entry in each row is 1 and it occurs in a column to the right of the first nonzero entry in the preceding row.

Theorem

Gaussian elimination transforms any matrix into its reduced row echelon form.

臣