Vector Spaces

01/11/2007

Lecture 2

Vector Spaces

- A vector space (or linear space) V over a field F consists of a set on which two operations (called addition and scalar multiplication, respectively) are defined such that

1. For all x, y in $V, x+y=y+x$.
2. For all x, y, z in $V,(x+y)+z=x+(y+z)$.
3. There exists an element in V denoted by 0 such that $x+0=x$ for each x in V.
4. For each element x in V there exists and element y in V such that $x+y=0$.
5. For each element x in $V, 1 x=x$.
6. For each pair of elements a, b in F and each element x in $V,(a b) x=a(b x)$.
7. For each element a in F and each pair of elements x, y in $V, a(x+y)=a x+a y$.
8. For each pair of elements a, b in F and each element x in $V,(a+b) x=a x+b x$.
9. For each element a in F and each pair of elements x, y in $V, a(x+y)=a x+a y$.
10. For each pair of elements a, b in F and each element x in $V,(a+b) x=a x+b x$.

- The elements of the field F are called scalars.
- The elements of the vector space V are called vectors.

Cancellation Law for Vector Addition

Theorem. If x, y, and z are vectors in a vector space V such that $x+z=y+z$, then $x=y$.

Cancellation Law for Vector Addition

Theorem. If x, y, and z are vectors in a vector space V such that $x+z=y+z$, then $x=y$.

- The vector 0 is unique and it is called the zero vector.
- The vector y is unique and it is called the additive inverse $-x$.

Properties of Scalar Multiplication

Theorem. In any vector space V, the following statements are true:

1. $0 x=0$ for each $x \in V$.
2. $(-a) x=-(a x)=a(-x)$ for each a in F and each x in V.
3. $a 0=0$ for each $a \in F$.
