Systems of Equations Theoretical Aspects

Lecture 19

February 22, 2007

Lecture 19 Systems of Equations

Definition

• A system of equations can be rewritten as a matrix equation

$$Ax = b.$$

• A solution to the system of equations is an *n*-tuple

$$s = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} \in F^n$$

such that As = b.

Definition

- The set of solutions is called the solution set of the system.
- A system of equation is called **consistent** if it has at least one solution.
- Otherwise it is called **inconsistent**.

Definition

- A system Ax = b of m linear equations in n unknowns is called homogeneous if b = 0.
- Otherwise the system is called nonhomogeneous.

Let Ax = 0 be a homogeneous system of linear equations. Let K denoted the solutions set of Ax = 0. Then $K = N(L_A)$; Hence K is a subspace of F^n of dimension $n - rank(L_A) = n - rank(A)$.

Corollary

If m < n, the system Ax = 0 has a nonzero solution.

Let K be the solution set of a system of linear equations Ax = b, and let K_H be the solution set of corresponding homogeneous system Ax = 0. Then for any solution s to Ax = b

$$K = \{s\} + K_H.$$

Let Ax = b be a system of n linear equations in n unknowns. If A is invertible, then the system has exactly one solution, namely $A^{-1}b$. Conversely, if the system has one solution, then A is invertible.

Let Ax = b be a system of linear equations. Then the system is consistent if and only if rank(A) = rank(A|b).