The Inverse of a Matrix

Lecture 18

February 21, 2007

The Augmented Matrix

Definition

- Let A and B be $m \times n$ and $m \times p$ matrices, respectively.
- The augmented matrix (A|B) is the $m \times (n+p)$ matrix (A|B).

The Inverse of a Matrix

Fact

- If A is an invertible $n \times n$ matrix, then it is possible to transform the matrix $(A|I_n)$ into the matrix $(I_n|A^{-1})$ by means of a finite number of tow operations.
- If A is an invertible $n \times n$ matrix, and the matrix $(A|I_n)$ is transformed into a matrix of the form $(I_n|B)$ by means of a finite number of elementary row operations, then $B = A^{-1}$.

Definition

• A system of equations can be rewritten as a matrix equation

$$Ax = b$$
.

A solution to the system of equations is an n-tuple

$$s = \begin{pmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{pmatrix} \in F^n$$

such that As = b.

Definition

- The set of solutions is called the solution set of the system.
- A system of equation is called consistent if it has at least one solution.
- Otherwise it is called inconsistent.

Definition

- A system Ax = b of m linear equations in n unknowns is called homogeneous if b = 0.
- Otherwise the system is called nonhomogeneous.

Theorem

Let Ax = 0 be a homogeneous system of linear equations. Let K denoted the solutions set of Ax = 0. Then $K = N(L_A)$; Hence K is a subspace of F^n of dimension $n - rank(L_A) = n - rank(A)$.

Corollary

If m < n, the system Ax = 0 has a nonzero solution.