The Inverse of a Matrix

Lecture 18

February 21, 2007

The Augmented Matrix

Definition

The Augmented Matrix

Definition

- Let A and B be $m \times n$ and $m \times p$ matrices, respectively.

Definition

- Let A and B be $m \times n$ and $m \times p$ matrices, respectively.
- The augmented matrix $(A \mid B)$ is the $m \times(n+p)$ matrix (A B).

The Inverse of a Matrix

Fact

Fact

- If A is an invertible $n \times n$ matrix, then it is possible to transform the matrix $\left(A \mid I_{n}\right)$ into the matrix $\left(I_{n} \mid A^{-1}\right)$ by means of a finite number of row operations.

Fact

- If A is an invertible $n \times n$ matrix, then it is possible to transform the matrix $\left(A \mid I_{n}\right)$ into the matrix $\left(I_{n} \mid A^{-1}\right)$ by means of a finite number of row operations.
- If A is an invertible $n \times n$ matrix, and the matrix $\left(A \mid I_{n}\right)$ is transformed into a matrix of the form $\left(I_{n} \mid B\right)$ by means of a finite number of elementary row operations, then $B=A^{-1}$.

Systems of Equations

 Theoretical Aspects
Definition

Systems of Equations

 Theoretical Aspects
Definition

- A system of equations can be rewritten as a matrix equation

$$
A x=b .
$$

Definition

- A system of equations can be rewritten as a matrix equation

$$
A x=b
$$

- A solution to the system of equations is an n-tuple

$$
s=\left(\begin{array}{c}
s_{1} \\
s_{2} \\
\vdots \\
s_{n}
\end{array}\right) \in F^{n}
$$

such that $A s=b$.

Systems of Equations

 Theoretical Aspects
Definition

Systems of Equations

 Theoretical Aspects
Definition

- The set of solutions is called the solution set of the system.

Definition

- The set of solutions is called the solution set of the system.
- A system of equation is called consistent if it has at least one solution.

Definition

- The set of solutions is called the solution set of the system.
- A system of equation is called consistent if it has at least one solution.
- Otherwise it is called inconsistent.

Systems of Equations Theoretical Aspects

Definition

Lecture 18 The Inverse of a Matrix

Systems of Equations

 Theoretical Aspects
Definition

- A system $A x=b$ of m linear equations in n unknowns is called homogeneous if $b=0$.

Systems of Equations

 Theoretical Aspects
Definition

- A system $A x=b$ of m linear equations in n unknowns is called homogeneous if $b=0$.
- Otherwise the system is called nonhomogeneous.

Systems of Equations

 Theoretical Aspects
Theorem

Let $A x=0$ be a homogeneous system of linear equations. Let K denoted the solutions set of $A x=0$. Then $K=N\left(L_{A}\right)$; Hence K is a subspace of F^{n} of dimension $n-\operatorname{rank}\left(L_{A}\right)=n-\operatorname{rank}(A)$.

Systems of Equations

Corollary

If $m<n$, the system $A x=0$ has a nonzero solution.

