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The Rank of a Matrix

Definition

Let A € Mpyxn(F). The rank of A, denoted rank(A) is defined to
be the rank of the linear transformation L4 : F" — F™.
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How to Compute the Rank of a Matrix?

Theorem

Let A be an m x n matrix of rank r. Then r < n and r < m, and,
by means of a finite number of elementary row and columns
operations, A can be transformed into the matrix

(1 0
o=(4 o)

where 01,05, and 03 are zero matrices.
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Consequences

Let A be an m X n matrix of rank r. Then there exist invertible
matrices B and C of sizes m x m and n X n, respectively, such that

D = BAC, where

(1 0
o=(5 o)
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Consequences

Corollary

Let A be an m x n matrix. Then
@ rank(A") = rank(A).

@ The rank of any matrix equals the maximum number of its
linearly independent rows.

© The rows and columns of any matrix generate subspaces of the
same dimension, equal to the rank of the matrix.

o
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Consequences

Every invertible matrix is a product of elementary matrices.
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Rank of the Product

Theorem

Let T:V — W and U : W — Z be linear transformations on
finite-dimensional vector spaces V/,W, and Z, and let A and B be
matrices such that the product AB is defined. Then

Q rank(UT) < rank(U).
Q rank(UT) < rank(T).
© rank(AB) < rank(A).
Q rank(AB) < rank(B).
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