The Rank of a Matrix (cont'd)

Lecture 17

February 16, 2007

Lecture 17 The Rank of a Matrix (cont'd)

Definition

Let $A \in M_{m \times n}(F)$. The rank of A, denoted rank(A) is defined to be the rank of the linear transformation $L_A : F^n \to F^m$.

Theorem

Let A be an $m \times n$ matrix of rank r. Then $r \le n$ and $r \le m$, and, by means of a finite number of elementary row and columns operations, A can be transformed into the matrix

$$D=\left(egin{array}{cc} I_r & 0_1 \ 0_2 & 0_3 \end{array}
ight),$$

where $0_1, 0_2$, and 0_3 are zero matrices.

Corollary

Let A be an $m \times n$ matrix of rank r. Then there exist invertible matrices B and C of sizes $m \times m$ and $n \times n$, respectively, such that D = BAC, where

$$D=\left(\begin{array}{cc}I_r&0_1\\0_2&0_3\end{array}\right).$$

Corollary

Let A be an $m \times n$ matrix. Then

- $rank(A^t) = rank(A)$.
- 2 The rank of any matrix equals the maximum number of its linearly independent rows.
- The rows and columns of any matrix generate subspaces of the same dimension, equal to the rank of the matrix.

Corollary

Every invertible matrix is a product of elementary matrices.

Theorem

Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations on finite-dimensional vector spaces V,W, and Z, and let A and B be matrices such that the product AB is defined. Then

- $rank(UT) \leq rank(U)$.
- 2 $rank(UT) \leq rank(T)$.
- 3 $rank(AB) \leq rank(A)$.
- $rank(AB) \leq rank(B)$.