The Rank of a Matrix (cont'd)

Lecture 17

February 16, 2007

Definition

Let $A \in \mathrm{M}_{m \times n}(F)$. The rank of A, denoted $\operatorname{rank}(A)$ is defined to be the rank of the linear transformation $L_{A}: F^{n} \rightarrow F^{m}$.

How to Compute the Rank of a Matrix?

Theorem

Let A be an $m \times n$ matrix of rank r. Then $r \leq n$ and $r \leq m$, and, by means of a finite number of elementary row and columns operations, A can be transformed into the matrix

$$
D=\left(\begin{array}{ll}
I_{r} & 0_{1} \\
0_{2} & 0_{3}
\end{array}\right)
$$

where $0_{1}, 0_{2}$, and 0_{3} are zero matrices.

Consequences

Corollary

Let A be an $m \times n$ matrix of rank r. Then there exist invertible matrices B and C of sizes $m \times m$ and $n \times n$, respectively, such that $D=B A C$, where

$$
D=\left(\begin{array}{cc}
I_{r} & 0_{1} \\
0_{2} & 0_{3}
\end{array}\right)
$$

Consequences

Corollary
 Let A be an $m \times n$ matrix. Then

Consequences

Corollary

Let A be an $m \times n$ matrix. Then
(1) $\operatorname{rank}\left(A^{t}\right)=\operatorname{rank}(A)$.

Consequences

Corollary

Let A be an $m \times n$ matrix. Then
(1) $\operatorname{rank}\left(A^{t}\right)=\operatorname{rank}(A)$.
(2) The rank of any matrix equals the maximum number of its linearly independent rows.

Consequences

Corollary

Let A be an $m \times n$ matrix. Then
(1) $\operatorname{rank}\left(A^{t}\right)=\operatorname{rank}(A)$.
(2) The rank of any matrix equals the maximum number of its linearly independent rows.
(3) The rows and columns of any matrix generate subspaces of the same dimension, equal to the rank of the matrix.

Consequences

Corollary

Every invertible matrix is a product of elementary matrices.

Rank of the Product

Theorem

Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations on finite-dimensional vector spaces V, W, and Z, and let A and B be matrices such that the product $A B$ is defined. Then
(1) $\operatorname{rank}(U T) \leq \operatorname{rank}(U)$.
(2) $\operatorname{rank}(U T) \leq \operatorname{rank}(T)$.
(3) $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
(1) $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

