The Rank of a Matrix

Lecture 16

February 14, 2007

The Rank of a Matrix

Definition

Let $A \in M_{m \times n}(F)$. The rank of A, denoted rank(A) is defined to be the rank of the linear transformation $L_A : F^n \to F^m$.

Properties

Fact

Properties

Fact

• An $n \times n$ matrix is invertible if and only if its rank is n.

Properties

Fact

- An $n \times n$ matrix is invertible if and only if its rank is n.
- If $T: V \to W$ is a linear transformation and β and γ are ordered bases for V and W, then $rank(T) = rank([T]_{\beta}^{\gamma}$.

Theorem

Let A be an $m \times n$ matrix. If P and Q are invertible $m \times m$ and $n \times n$ matrices, respectively, then

<u>Th</u>eorem

Let A be an $m \times n$ matrix. If P and Q are invertible $m \times m$ and $n \times n$ matrices, respectively, then

• rank(AQ) = rank(A) = rank(PA).

Theorem

Let A be an $m \times n$ matrix. If P and Q are invertible $m \times m$ and $n \times n$ matrices, respectively, then

- rank(AQ) = rank(A) = rank(PA).
- \circ rank(PAQ) = rank(A).

Theorem

Let A be an $m \times n$ matrix. If P and Q are invertible $m \times m$ and $n \times n$ matrices, respectively, then

- rank(AQ) = rank(A) = rank(PA).
- $oldsymbol{2}$ rank(PAQ) = rank(A).
- Elementary row and column operations on a matrix are rank-preserving.

How to Compute the Rank of a Matrix?

Theorem

The rank of any matrix equals the maximum number of its linearly independent columns; that is, the rank of a matrix is the dimension of the subspace generated by its columns.

How to Compute the Rank of a Matrix?

Theorem

Let A be an $m \times n$ matrix of rank r. Then $r \le n$ and $r \le m$, and, by means of a finite number of elementary row and columns operations, A can be transformed into the matrix

$$D = \left(\begin{array}{cc} I_r & 0_1 \\ 0_2 & 0_3 \end{array}\right),$$

where $0_1, 0_2$, and 0_3 are zero matrices.

Corollary

Let A be an $m \times n$ matrix of rank r. Then there exist invertible matrices B and C of sizes $m \times m$ and $n \times n$, respectively, such that D = BAC, where

$$D = \left(\begin{array}{cc} I_r & O_1 \\ O_2 & O_3 \end{array}\right).$$

Corollary

Let A be an $m \times n$ matrix. Then

Corollary

Let A be an $m \times n$ matrix. Then

 $\bullet \ rank(A^t) = rank(A).$

Corollary

Let A be an $m \times n$ matrix. Then

- $rank(A^t) = rank(A)$.
- 2 The rank of any matrix equals the maximum number of its linearly independent rows.

Corollary

Let A be an $m \times n$ matrix. Then

- $rank(A^t) = rank(A)$.
- 2 The rank of any matrix equals the maximum number of its linearly independent rows.
- The rows and columns of any matrix generate subspaces of the same dimension, equal to the rank of the matrix.

Corollary

Every invertible matrix is a product of elementary matrices.