Elementary Matrix Operations and Elementary Matrices

Lecture 15

February 12, 2007

Lecture 15 Elementary Matrix Operations and Elementary Matrices

Definition

Let A be an $m \times n$ matrix. The left multiplication by A is the linear transformation $L_A : F^n \to F^m$ defined by

$$L_A(x) = Ax.$$

Theorem

Let A and B be $n \times m$ matrices. Then

$$\bullet \ [L_A]^{\gamma}_{\beta} = A.$$

2)
$$L_A = L_B$$
 if and only if $A = B$.

 If T : Fⁿ → F^m is linear, then there exists a unique m × n matrix C such that T = L_C.

$$I_{AE} = L_A L_E.$$

Change of Coordinates for Left-Multiplication Transformations

Theorem

Let A be an $n \times n$ matrix and let γ be an ordered basis for F^n . Then $[L_A]_{\gamma} = Q^{-1}AQ$, where Q is the $n \times n$ matrix whose jth column is the jth vector of γ .

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an **elementary row** [column] operation:

- **(**) interchanging any two rows [columns] of A. (type 1)
- Image: multiplying any row [column] of A by a nonzero scalar.(type 2)
- adding any scalar multiple of a row [column] of A to another row [column].(type 3)

Definition

- An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on I_n .
- The elementary matrix is said to be of **type 1**, **2**, or 3 according to whether the elementary operation performed on I_n is a type 1, 2, or 3 operation, respectively.

Theorem

Let $A \in M_{m \times n}(F)$, and suppose that B is obtained from A by performing an elementary row operation. Then there exists an $m \times m$ elementary matrix such that B = EA. In fact, E is obtained from I_m by performing the same row operation as that which was performed on A to obtain B. Conversely, if E is an elementary $m \times m$ matrix, then EA is the matrix obtained from A by performing the same elementary row operation which produces E from I_m .

Theorem

Elementary matrices are invertible, and the inverse of an elementary matrix is an elementary matrix of the same type.