Elementary Matrix Operations and Elementary Matrices

Lecture 15

February 12, 2007

Left-Multiplication Transformations

Definition

Let A be an $m \times n$ matrix. The left multiplication by A is the linear transformation $L_{A}: F^{n} \rightarrow F^{m}$ defined by

$$
L_{A}(x)=A x
$$

Left-Multiplication Transformations

Theorem
 Let A and B be $n \times m$ matrices. Then

Left-Multiplication Transformations

Theorem

Let A and B be $n \times m$ matrices. Then
(1) $\left[L_{A}\right]_{\beta}^{\gamma}=A$.

Left-Multiplication Transformations

Theorem

Let A and B be $n \times m$ matrices. Then
(1) $\left[L_{A}\right]_{\beta}^{\gamma}=A$.
(2) $L_{A}=L_{B}$ if and only if $A=B$.

Left-Multiplication Transformations

Theorem

Let A and B be $n \times m$ matrices. Then
(1) $\left[L_{A}\right]_{\beta}^{\gamma}=A$.
(2) $L_{A}=L_{B}$ if and only if $A=B$.
(3) $L_{A+B}=L_{A}+L_{B}$ and $L_{a A}=a L_{a}$ for all $a \in F$.

Left-Multiplication Transformations

Theorem

Let A and B be $n \times m$ matrices. Then
(1) $\left[L_{A}\right]_{\beta}^{\gamma}=A$.
(2) $L_{A}=L_{B}$ if and only if $A=B$.
(3) $L_{A+B}=L_{A}+L_{B}$ and $L_{a A}=a L_{a}$ for all $a \in F$.
(9) If $T: F^{n} \rightarrow F^{m}$ is linear, then there exists a unique $m \times n$ matrix C such that $T=L_{C}$.

Left-Multiplication Transformations

Theorem

Let A and B be $n \times m$ matrices. Then
(1) $\left[L_{A}\right]_{\beta}^{\gamma}=A$.
(2) $L_{A}=L_{B}$ if and only if $A=B$.
(3) $L_{A+B}=L_{A}+L_{B}$ and $L_{a A}=a L_{a}$ for all $a \in F$.
(9) If $T: F^{n} \rightarrow F^{m}$ is linear, then there exists a unique $m \times n$ matrix C such that $T=L_{C}$.
(5) $L_{A E}=L_{A} L_{E}$.

Change of Coordinates for Left-Multiplication Transformations

Theorem

Let A be an $n \times n$ matrix and let γ be an ordered basis for F^{n}. Then $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q$, where Q is the $n \times n$ matrix whose j th column is the j th vector of γ.

Elementary Matrix Operations

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an elementary row [column] operation:

Elementary Matrix Operations

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an elementary row [column] operation:
(1) interchanging any two rows [columns] of A. (type 1)

Elementary Matrix Operations

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an elementary row [column] operation:
(1) interchanging any two rows [columns] of A. (type 1)
(2) multiplying any row [column] of A by a nonzero scalar.(type 2)

Elementary Matrix Operations

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an elementary row [column] operation:
(1) interchanging any two rows [columns] of A. (type 1)
(2) multiplying any row [column] of A by a nonzero scalar.(type 2)
(3) adding any scalar multiple of a row [column] of A to another row [column].(type 3)

Elementary Matrices

Definition

- An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on I_{n}.
- The elementary matrix is said to be of type $\mathbf{1 , 2}$, or 3 according to whether the elementary operation performed on I_{n} is a type 1,2 , or 3 operation, respectively.

Multiplying with an Elementary Matrix

Theorem

Let $A \in M_{m \times n}(F)$, and suppose that B is obtained from A by performing an elementary row operation. Then there exists an $m \times m$ elementary matrix such that $B=E A$. In fact, E is obtained from I_{m} by performing the same row operation as that which was performed on A to obtain B.
Conversely, if E is an elementary $m \times m$ matrix, then $E A$ is the matrix obtained from A by performing the same elementary row operation which produces E from I_{m}.

Every Elementary Matrix is Invertible

Theorem

Elementary matrices are invertible, and the inverse of an elementary matrix is an elementary matrix of the same type.

