Elementary Matrix Operations and Elementary Matrices

Lecture 15

February 12, 2007

Definition

Let A be an $m \times n$ matrix. The left multiplication by A is the linear transformation $L_A: F^n \to F^m$ defined by

$$L_A(x) = Ax$$
.

Theorem

Theorem

$$\bullet \ [L_A]^{\gamma}_{\beta} = A.$$

Theorem

- $\bullet \ [L_A]^{\gamma}_{\beta} = A.$
- 2 $L_A = L_B$ if and only if A = B.

Theorem

- $\bullet \ [L_A]^{\gamma}_{\beta} = A.$
- 2 $L_A = L_B$ if and only if A = B.
- 3 $L_{A+B} = L_A + L_B$ and $L_{aA} = aL_a$ for all $a \in F$.

Theorem

- $\bullet \ [L_A]^{\gamma}_{\beta} = A.$
- \bullet $L_A = L_B$ if and only if A = B.
- **4** If $T: F^n \to F^m$ is linear, then there exists a unique $m \times n$ matrix C such that $T = L_C$.

Theorem

- \bullet $L_A = L_B$ if and only if A = B.
- **1** If $T: F^n \to F^m$ is linear, then there exists a unique $m \times n$ matrix C such that $T = L_C$.
- $\bullet \ L_{AE} = L_A L_E.$

Change of Coordinates for Left-Multiplication Transformations

Theorem

Let A be an $n \times n$ matrix and let γ be an ordered basis for F^n . Then $[L_A]_{\gamma} = Q^{-1}AQ$, where Q is the $n \times n$ matrix whose jth column is the jth vector of γ .

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an **elementary row** [column] operation:

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an **elementary row** [column] operation:

• interchanging any two rows [columns] of A. (type 1)

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an **elementary row** [column] operation:

- interchanging any two rows [columns] of A. (type 1)
- 2 multiplying any row [column] of A by a nonzero scalar.(type 2)

Definition

Let A be an $m \times n$ matrix. Any one of the following three operations on the rows [columns] of A is called an **elementary row** [column] operation:

- interchanging any two rows [columns] of A. (type 1)
- ② multiplying any row [column] of A by a nonzero scalar.(type 2)
- adding any scalar multiple of a row [column] of A to another row [column].(type 3)

Elementary Matrices

Definition

- An $n \times n$ elementary matrix is a matrix obtained by performing an elementary operation on I_n .
- The elementary matrix is said to be of **type 1**, **2**, or 3 according to whether the elementary operation performed on I_n is a type 1, 2, or 3 operation, respectively.

Multiplying with an Elementary Matrix

Theorem

Let $A \in M_{m \times n}(F)$, and suppose that B is obtained from A by performing an elementary row operation. Then there exists an $m \times m$ elementary matrix such that B = EA. In fact, E is obtained from I_m by performing the same row operation as that which was performed on A to obtain B.

Conversely, if E is an elementary $m \times m$ matrix, then EA is the matrix obtained from A by performing the same elementary row operation which produces E from I_m .

Every Elementary Matrix is Invertible

Theorem

Elementary matrices are invertible, and the inverse of an elementary matrix is an elementary matrix of the same type.