The Change of Coordinate Matrix

Lecture 14

February 7, 2007

Linear Maps "are" Matrices

Theorem

Let V and W be finite-dimensional vector spaces over F of dimensions n and m, and let β and γ be ordered bases for V and W, respectively. Then the function $\phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$, defined by

$$
\phi(T)=[T]_{\beta}^{\gamma}
$$

is an isomorphism.

Change of Variables

Example

(1) Solve the integral $\int \cos (x) e^{\sin (x)} \mathrm{d} x$

Change of Variables

Example

(1) Solve the integral $\int \cos (x) e^{\sin (x)} \mathrm{d} x$
(2) Can you recognize the shape of the curve given by the equation

$$
2 x^{2}-4 x y+5 y^{2}=1 ?
$$

Change of Coordinates

Theorem

Let β and β^{\prime} be two ordered bases for a finite-dimensional vector space V, and let $Q=\left[I_{V}\right]_{\beta^{\prime}}^{\beta}$. Then
(1) Q is invertible.
(2) For any $v \in V,[v]_{\beta}=Q[v]_{\beta^{\prime}}$.

Change of Coordinate Matrix

Definition

The matrix $Q=[I V]_{\beta^{\prime}}^{\beta}$, is called a change of coordinate matrix.

Fact

$$
\begin{aligned}
\text { If } \beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \text { and } \beta^{\prime} & =\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}, \text { then } \\
x_{j}^{\prime} & =\sum_{i=1}^{n} Q_{i j} x_{i}
\end{aligned}
$$

Change of the Matrix of a Linear Transformation

Theorem

Let T be a linear operator on a finite-dimensional vector space, and let β and β^{\prime} be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β^{\prime}-coordinates into β-coordinates. Then

$$
[T]_{\beta^{\prime}}=Q^{-1}[T]_{\beta} Q .
$$

Similarity

Definition

Let A and B be matrices in $M_{n \times n}(F)$. We say that B is similar to A if there exists an invertible matrix Q such that $B=Q^{-1} A Q$.

Fact

The previous theorem says that $[T]_{\beta^{\prime}}$ and $[T]_{\beta}$ are similar.

Left-Multiplication Transformations

Definition

Let A be an $m \times n$ matrix. The left multiplication by A is the linear transformation $L_{A}: F^{n} \rightarrow F^{m}$ defined by

$$
L_{A}(x)=A x
$$

Left-Multiplication Transformations

Theorem

Let A and B be $n \times m$ matrices. Then
(1) $\left[L_{A}\right]_{\beta}^{\gamma}=A$.
(2) $L_{A}=L_{B}$ if and only if $A=B$.
(3) $L_{A+B}=L_{A}+L_{B}$ and $L_{a A}=a L_{a}$ for all $a \in F$.
(9) If $T: F^{n} \rightarrow F^{m}$ is linear, then there exists a unique $m \times n$ matrix C such that $T=L_{C}$.
(5) $L_{A E}=L_{A} L_{E}$.

Change of Coordinates for Left-Multiplication Transformations

Theorem

Let A be an $n \times n$ matrix and let γ be an ordered basis for F^{n}. Then $\left[L_{A}\right]_{\gamma}=Q^{-1} A Q$, where Q is the $n \times n$ matrix whose j th column is the j th vector of γ.

