The Change of Coordinate Matrix

Lecture 14

February 7, 2007

Lecture 14 The Change of Coordinate Matrix

(□) < □)</p>

Theorem

Let V and W be finite-dimensional vector spaces over F of dimensions n and m, and let β and γ be ordered bases for V and W, respectively. Then the function $\phi : \mathcal{L}(V, W) \to M_{m \times n}(F)$, defined by

$$\phi(T) = [T]^{\gamma}_{\beta}$$

is an isomorphism.

・ 同・ ・ ヨ・

Example

• Solve the integral $\int \cos(x) e^{\sin(x)} dx$

・ロト ・回ト ・ヨト ・ヨト

æ

Example

- Solve the integral $\int \cos(x)e^{\sin(x)}dx$
- ② Can you recognize the shape of the curve given by the equation

$$2x^2 - 4xy + 5y^2 = 1?$$

< 17 × <

∃ >

Theorem

Let β and β' be two ordered bases for a finite-dimensional vector space V, and let $Q = [I_V]^{\beta}_{\beta'}$. Then

Q is invertible.

2 For any
$$v \in V$$
, $[v]_{\beta} = Q[v]_{\beta'}$.

토 > 토

Definition

The matrix $Q = \left[I_V\right]_{\beta'}^{\beta}$ is called a change of coordinate matrix.

Fact

If
$$\beta = \{x_1, x_2, \dots, x_n\}$$
 and $\beta' = \{x_1', x_2', \dots, x_n'\}$, then

$$x_j' = \sum_{i=1}^n Q_{ij} x_i.$$

・ロト ・回ト ・ヨト ・ヨト

臣

Change of the Matrix of a Linear Transformation

Theorem

Let T be a linear operator on a finite-dimensional vector space, and let β and β' be ordered bases for V. Suppose that Q is the change of coordinate matrix that changes β' -coordinates into β -coordinates. Then

$$[T]_{\beta'} = Q^{-1}[T]_{\beta}Q.$$

Definition

Let A and B be matrices in $M_{n \times n}(F)$. We say that B is similar to A if there exists an invertible matrix Q such that $B = Q^{-1}AQ$.

Fact

The previous theorem says that $[T]_{\beta'}$ and $[T]_{\beta}$ are similar.

・ロン ・四マ ・ビリン ・ロン

Definition

Let A be an $m \times n$ matrix. The left multiplication by A is the linear transformation $L_A : F^n \to F^m$ defined by

$$L_A(x) = Ax.$$

・ロト ・回ト ・ヨト ・ヨト

Theorem

Let A and B be $n \times m$ matrices. Then

$$\bullet \ [L_A]^{\gamma}_{\beta} = A.$$

2
$$L_A = L_B$$
 if and only if $A = B$.

 If T : Fⁿ → F^m is linear, then there exists a unique m × n matrix C such that T = L_C.

$$I_{AE} = L_A L_E.$$

(D) (A) (A) (A) (A)

æ

Change of Coordinates for Left-Multiplication Transformations

Theorem

Let A be an $n \times n$ matrix and let γ be an ordered basis for F^n . Then $[L_A]_{\gamma} = Q^{-1}AQ$, where Q is the $n \times n$ matrix whose jth column is the jth vector of γ .

・ 同 ト ・ ヨ ト ・ ヨ ト