Invertibility and Isomorphisms

February 5, 2007

Lecture 13

Invertibility of Linear Maps

- Let V and W be vector spaces, and let $T: V \to W$ be linear.
- A function $U: W \to V$ is an **inverse** of T is $TU = 1_W$ and $UT = 1_V$.
- If T has an inverse, then we call T invertible.

Invertibility of Linear Maps

- Let V and W be vector spaces, and let $T: V \to W$ be linear.
- A function $U: W \to V$ is an **inverse** of T is $TU = 1_W$ and $UT = 1_V$.
- If T has an inverse, then we call T invertible.
- Recall that the inverse of a function is unique and is denoted by T^{-1} .

Properties of the Inverse of A Linear Map

- $(TU)^{-1} = U^{-1}T^{-1}$.
- $(T^{-1})^{-1} = T$
- A map is invertible if and only if it is one-to-one and onto.
- A linear map $T: V \to W$ is invertible if and only if $\operatorname{rank}(T) = \dim(V)$.

The Inverse of A Linear Map is Linear

Theorem. Let $T: V \to W$ be linear, where V and W are vector spaces. Suppose that T is invertible. Then T^{-1} is linear.

The Inverse of a Matrix

- Let A be an $n \times n$ matrix.
- We say that A is **invertible** if there exists an $n \times n$ matrix B such that

AB = BA = I.

The Matrix of An Invertible Linear Map is Invertible

Theorem. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively. Let $T: V \to W$ be linear. Then T is invertible if and only if $[T]^{\gamma}_{\beta}$ is invertible. Moreover, $[T^{-1}]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^{-1}$.

Isomorphisms

- Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear map.
- If T is invertible, we call it an **isomorphism**.
- We say that V and W are **isomorphic**.

Theorem. Let V and W be two vector spaces. Suppose that V is finitedimensional. Then V is isomorphic t oW if and only if W is finite dimensional and dim(V) = dim(W).

All Finite Dimensional Spaces of a Fixed Dimension are Isomorphic

Corollary. Let V be a vector space over F. Then V is isomorphic to F^n if and only if $\dim(V) = n$. Moreover an isomorphism is given by the function $\phi_\beta: V \to F^n$ defined by

$$\phi_{\beta}(x) = [x]_{\beta},$$

where β is an ordered basis for V.

Linear Maps "are" Matrices

Theorem. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, and let β and γ be ordered bases for V and W, respectively. Then the function $\phi : \mathcal{L}(V, W) \to M_{m \times n}(F)$, defined by

$$\phi(T) = [T]_{\beta}^{\gamma}$$

is an isomorphism.