Invertibility and Isomorphisms

February 5, 2007

Invertibility of Linear Maps

- Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear.
- A function $U: W \rightarrow V$ is an inverse of T is $T U=1_{W}$ and $U T=1_{V}$.
- If T has an inverse, then we call T invertible.

Invertibility of Linear Maps

- Let V and W be vector spaces, and let $T: V \rightarrow W$ be linear.
- A function $U: W \rightarrow V$ is an inverse of T is $T U=1_{W}$ and $U T=1_{V}$.
- If T has an inverse, then we call T invertible.
- Recall that the inverse of a function is unique and is denoted by T^{-1}.

Properties of the Inverse of A Linear Map

- $(T U)^{-1}=U^{-1} T^{-1}$.
- $\left(T^{-1}\right)^{-1}=T$
- A map is invertible if and only if it is one-to-one and onto.
- A linear map $T: V \rightarrow W$ is invertible if and only if $\operatorname{rank}(T)=\operatorname{dim}(V)$.

The Inverse of A Linear Map is Linear

Theorem. Let $T: V \rightarrow W$ be linear, where V and W are vector spaces. Suppose that T is invertible. Then T^{-1} is linear.

The Inverse of a Matrix

- Let A be an $n \times n$ matrix.
- We say that A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I .
$$

The Matrix of An Invertible Linear Map is Invertible

Theorem. Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively. Let $T: V \rightarrow W$ be linear. Then T is invertible if and only if $[T]_{\beta}^{\gamma}$ is invertible. Moreover, $\left[T^{-1}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{-1}$.

Isomorphisms

- Let V and W be vector spaces, and let $T: V \rightarrow W$ be a linear map.
- If T is invertible, we call it an isomorphism.
- We say that V and W are isomorphic.

Theorem. Let V and W be two vector spaces. Suppose that V is finitedimensional. Then V is isomorphic $t o W$ if and only if W is finite dimensional and $\operatorname{dim}(V)=\operatorname{dim}(W)$.

All Finite Dimensional Spaces of a Fixed Dimension are Isomorphic

Corollary. Let V be a vector space over F. Then V is isomorphic to F^{n} if and only if $\operatorname{dim}(V)=n$. Moreover an isomorphism is given by the function $\phi_{\beta}: V \rightarrow F^{n}$ defined by

$$
\phi_{\beta}(x)=[x]_{\beta},
$$

where β is an ordered basis for V.

Linear Maps "are" Matrices

Theorem. Let V and W be finite-dimensional vector spaces over F of dimensions n and m, and let β and γ be ordered bases for V and W, respectively. Then the function $\phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$, defined by

$$
\phi(T)=[T]_{\beta}^{\gamma}
$$

is an isomorphism.

