The Matrix Representation of a Linear Transformation

February 2, 2007

Lecture 12

- Let $\beta = \{u_1, u_2, \dots, u_n\}$ be an ordered basis for a finite-dimensional vector space V_{\cdot}
- For a vector v in V write it as a linear combination of the vectors in the basis:

$$v = \sum_{i=1}^{n} a_i u_i.$$

• The coordinate vector of x relative to β , denoted $[x]_{\beta}$ is

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

- Let $T: V \to W$ be linear.
- Let $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$ be basis for V and, respectively, W.
- Then we can write

$$T(v_j) = \sum_{i=1}^n a_{ij} w_i \text{ for } 1 \le j \le n.$$

• We call the $m \times n$ matrix A defined by the scalars a_{ij} the matrix representation of T in the ordered bases β and γ ; we write $A = [T]_{\beta}^{\gamma}$.

Examples:

• Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(a_1, a_2, a_3) = (3a_1 + a_2, a_1 + a_3, a_1 - a_3)$.

• Consider the standard ordered basis $\{e_1, e_2, e_3\}$. With respect to this basis the coordinate vector of an element (a_1, a_2, a_3) is

$$\left(\begin{array}{c}a_1\\a_2\\a_3\end{array}\right)$$

 $\bullet\,$ The matrix representation of T is

$$\left(\begin{array}{rrrr} 3 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & -1 \end{array}\right).$$

- Suppose now that we choose as a basis for $V=\mathbb{R}^3$ the set $\beta=\{(1,0,0),(1,1,0),(1,1,1)\}.$
- Then the coordinate vector of an element (a_1, a_2, a_3) is

$$\left(\begin{array}{c}a_1-a_2\\a_2-a_3\\a_3\end{array}\right).$$

• The matrix representation of T with respect to this basis is

$$\left(\begin{array}{rrrr} 3 & 4 & 4 \\ 1 & 1 & 2 \\ 1 & 1 & 0 \end{array}\right).$$

One more example:

- Consider the linear transformation $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ be defined by $T(a_0 + a_1x + a_2x^2) = (a_0, a_1, a_2)$.
- What is the matrix representation with respect to the standard basis in $P_2(\mathbb{R})$ and \mathbb{R}^3 ?

One more example:

- Consider the linear transformation $T: P_2(\mathbb{R}) \to \mathbb{R}^3$ be defined by $T(a_0 + a_1x + a_2x^2) = (a_0, a_1, a_2)$.
- What is the matrix representation with respect to the standard basis in $P_2(\mathbb{R})$ and \mathbb{R}^3 ?
- What if we choose a basis in $P_2(\mathbb{R})$ having elements with the same degree?

Theorem. Let V and W be finite-dimensional vector spaces having ordered bases β and γ , respectively, and let $T : V \to W$ be linear. Then, for each $u \in V$, we have

 $[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}.$

The Matrix Representation of the Sum of two Linear Transformations

Theorem. Let V and W be finite-dimensional vector spaces with ordered bases β and γ , respectively, and let $T, U : V \to W$ be linear transformations. Then

- 1. $[T+U]^{\gamma}_{\beta}=[T]^{\gamma}_{\beta}+[U]^{\gamma}_{\beta}$ and
- 2. $[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$ for all scalars a.

The space of Linear Transformations

- Let V and W be vector spaces over the field F.
- We denote by $\mathcal{L}(V,W)$ the set of all linear transformations from V into W.
- If V = W we write shortly $\mathcal{L}(V)$.

Composition of Linear Transformations and Matrix Multiplication

- **Recall:** The composition of two linear maps is linear.
- That is, if $T: V \to W$ and $S: W \to Z$ are linear, where V, W, and Z are vector spaces over the same field, then $ST = S \circ T: V \to Z$ is linear.

Matrix Multiplication

- Let A be an $m \times n$ matrix and B be an $n \times p$ matrix.
- The product of A and B, denoted AB is the $n\times p$ matrix such that

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$
 for $1 \le i \le m, 1 \le j \le p$.

• Matrix multiplication satisfies all the "nice" properties: (see Theorem 2.12)

$$-A(B+C) = AB + AC \text{ and } (D+E)A = DA + EA.$$

$$- a(AB) = (aA)B = A(aB).$$

$$-I_mA = A = AI_n$$
 if A is an $m \times n$ -matrix.

Theorem. Let V, W, and Z be finite-dimensional vector spaces with ordered bases α, β , and γ respectively. Let $T: V \to W$ and $U: W \to Z$ be linear transformations. Then

 $[UT]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}.$