Linear Transformations

February 1, 2007

Linear Transformations are Determined by the Values on a Basis

Theorem. Let V and W be vector spaces over F, and suppose that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V. For $w_{1}, w_{2}, \ldots, w_{n}$ in W, there exists exactly one linear transformation $T: V \rightarrow W$ such that $T\left(v_{i}\right)=w_{i}$ for $i=1,2, \ldots, n$.

Corollary. Let V and W be vector spaces, and suppose that V has a finite basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. If $U, T: V \rightarrow W$ are linear and $U\left(v_{i}\right)=T\left(v_{i}\right)$ for $i=1,2, \ldots, n$, then $U=T$.

The Matrix Representation of a Linear Transformation

- Let V be a finite-dimensional vector space.
- An ordered basis for V is a basis for V endowed with a specific order.

The Matrix Representation of a Linear Transformation

- Let V be a finite-dimensional vector space.
- An ordered basis for V is a basis for V endowed with a specific order.
- We call $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ the standard ordered basis for F^{n}.
- We call $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ the standard ordered basis for $P_{n}(F)$.
- Let $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an ordered basis for a finitedimensional vector space V.
- For a vector v in V write it as a linear combination of the vectors in the basis:

$$
v=\sum_{i=1}^{n} a_{i} u_{i} .
$$

- The coordinate vector of x relative to β, denoted $[x]_{\beta}$ is

$$
[x]_{\beta}=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

- Let $T: V \rightarrow W$ be linear.
- Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be basis for V and, respectively, W.
- Then we can write

$$
T\left(v_{j}\right)=\sum_{i=1}^{n} a_{i j} w_{i} \text { for } 1 \leq j \leq n .
$$

- We call the $m \times n$ matrix A defined by the scalars $a_{i j}$ the matrix representation of T in the ordered bases β and γ; we write $A=[T]_{\beta}^{\gamma}$.

The Matrix Representation of the Sum of two Linear Transformations

Theorem. Let V and W be finite-dimensional vector spaces with ordered bases β and γ, respectively, and let $T, U: V \rightarrow W$ be linear transformations. Then

1. $[T+U]_{\beta}^{\gamma}=[T]_{\beta}^{\gamma}+[U]_{\beta}^{\gamma}$ and
2. $[a T]_{\beta}^{\gamma}=a[T]_{\beta}^{\gamma}$ for all scalars a.
