Linear Transformations

February 1, 2007

Linear Transformations are Determined by the Values on a Basis

Theorem. Let *V* and *W* be vector spaces over *F*, and suppose that $\{v_1, v_2, \ldots, v_n\}$ is a basis for *V*. For w_1, w_2, \ldots, w_n in *W*, there exists exactly one linear transformation $T : V \to W$ such that $T(v_i) = w_i$ for $i = 1, 2, \ldots, n$.

Corollary. Let *V* and *W* be vector spaces, and suppose that *V* has a finite basis $\{v_1, v_2, \ldots, v_n\}$. If $U, T : V \to W$ are linear and $U(v_i) = T(v_i)$ for $i = 1, 2, \ldots, n$, then U = T.

1

The Matrix Representation of a Linear Transformation

- Let *V* be a finite-dimensional vector space.
- An **ordered basis** for *V* is a basis for *V* endowed with a specific order.

The Matrix Representation of a Linear Transformation

- Let *V* be a finite-dimensional vector space.
- An **ordered basis** for *V* is a basis for *V* endowed with a specific order.
- We call $\{e_1, e_2, \ldots, e_n\}$ the standard ordered basis for F^n .
- We call $\{1, x, x^2, \dots, x^n\}$ the standard ordered basis for $P_n(F)$.

- Let $\beta = \{u_1, u_2, \dots, u_n\}$ be an ordered basis for a finitedimensional vector space V.
- For a vector v in V write it as a linear combination of the vectors in the basis:

$$v = \sum_{i=1}^{n} a_i u_i.$$

• The coordinate vector of x relative to β , denoted $[x]_{\beta}$ is

$$[x]_{\beta} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

- Let $T: V \to W$ be linear.
- Let $\beta = \{v_1, v_2, \dots, v_n\}$ and $\gamma = \{w_1, w_2, \dots, w_m\}$ be basis for V and, respectively, W.
- Then we can write

$$T(v_j) = \sum_{i=1}^n a_{ij} w_i \text{ for } 1 \le j \le n.$$

We call the m×n matrix A defined by the scalars a_{ij} the matrix representation of T in the ordered bases β and γ; we write A = [T]^γ_β.

The Matrix Representation of the Sum of two Linear Transformations

Theorem. Let *V* and *W* be finite-dimensional vector spaces with ordered bases β and γ , respectively, and let $T, U : V \rightarrow W$ be linear transformations. Then

- 1. $[T + U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta}$ and
- 2. $[aT]^{\gamma}_{\beta} = a[T]^{\gamma}_{\beta}$ for all scalars a.